

**Original instructions** 

## **DESMI Vertical In-Line Centrifugal Pump**

## **OPERATION AND MAINTENANCE INSTRUCTIONS**

## **NSL MONOBLOC & SPACER**



## **DESMI** Pumping Technology A/S

Tagholm I, DK-9400 Nørresundby, Denmark

Tel.: +45 96 32 81 11

Fax: +45 98 17 54 99

E-mail: desmi@desmi.com

Internet: www.desmi.com

| Manual: | Language: | Revision:  |
|---------|-----------|------------|
| T1542   | English   | A.7(09/24) |



Special pump Number. ....

## Contents

| 1.   | GENERAL DESCRIPTION                                              | 5      |
|------|------------------------------------------------------------------|--------|
| 1.1. | General                                                          | 6      |
| 1.2. | Personnel qualification and training                             | 6      |
| 1.3. | EU & UK declaration of conformity                                | 7      |
| 1.4. | ATEX declaration of conformity                                   | 8      |
|      | 1.4.1. Product description                                       | 8      |
|      | 1.4.2. Precautions                                               | 8      |
| 1.5. | Information relevant for disassembly or disposal at end-of-life  | 9      |
| 2.   | SAFETY                                                           | . 10   |
| 2.1. | Key to safety symbols/markings                                   | . 10   |
|      | 2.1.1. Signal words                                              | . 10   |
|      | 2.1.2. Hazard symbols                                            | . 10   |
|      | 2.1.3. Labels on the product                                     | . 11   |
| 2.2. | Intended use                                                     | . 12   |
| 2.3. | Consequences and risks caused by non-compliance with this manual | . 13   |
| 2.4. | Safety awareness                                                 | . 13   |
| 2.5. | Safety information for the operator/user                         | . 13   |
| 2.6. | Safety information for maintenance, inspection and installation  | . 14   |
| 2.7. | Unauthorised modes of operation                                  | . 14   |
| 2.8. | Explosion protection                                             | . 14   |
|      | 2.8.1. Marking                                                   | . 15   |
|      | 2.8.2. Temperature limits                                        | . 15   |
|      | 2.8.3. Monitoring equipment                                      |        |
|      | 2.8.4. Operating limits                                          |        |
| 2.9. | Frost protection                                                 | . 16   |
| 3.   | TRANSPORTATION, PREVENTATION AND TEMPORARY STORAGE               | . 17   |
| 3.1. | Checking the condition upon delivery                             | . 17   |
| 3.2. | Transport                                                        | . 17   |
| 3.3. | Storage/Preservation                                             | . 19   |
| 3.4. | Return to supplier                                               | . 19   |
| 3.5. | Disposal                                                         | . 20   |
| 4.   | TECHNICAL SPECIFICATION                                          | . 21   |
| 4.1. | Work range                                                       | . 21   |
| 4.2. | Technical data                                                   | . 24   |
|      | 4.2.1. Maximum work pressure                                     | . 24   |
|      | 4.2.2. Noise emission                                            | . 25   |
|      | DESMI Pumping Technolo                                           | gy A/S |

|                                                                                                           | 4.2.3.                                                | Generated vibration                                                                                                                                                     | .26                                         |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                           | 4.2.4.                                                | Hydraulic capacity                                                                                                                                                      |                                             |
|                                                                                                           | 4.2.5.                                                | Allowed maximum motor frame size                                                                                                                                        | .26                                         |
| 4.3.                                                                                                      | Nam                                                   | e plate                                                                                                                                                                 | .27                                         |
|                                                                                                           | 4.3.1.                                                | Explanation of the type                                                                                                                                                 | .27                                         |
|                                                                                                           | 4.3.2.                                                | Explanation of the type number and pump number                                                                                                                          | 29                                          |
|                                                                                                           | 4.3.3.                                                | Explanation of pump performance                                                                                                                                         | .29                                         |
| 4.4.                                                                                                      | Dime                                                  | ensional drawing                                                                                                                                                        | .30                                         |
|                                                                                                           | 4.4.1.                                                | NSL-215/265 -02 combination                                                                                                                                             | .30                                         |
|                                                                                                           | 4.4.2.                                                | NSL-215/265 -12 combination                                                                                                                                             | .31                                         |
|                                                                                                           | 4.4.3.                                                | NSL-215/265 -13/14 combinations                                                                                                                                         | 32                                          |
|                                                                                                           | 4.4.4.                                                | NSL-330/415/418/465/525 -02 combination                                                                                                                                 | 33                                          |
|                                                                                                           | 4.4.5.                                                | NSL-330/415/418/465/525 -12 combination                                                                                                                                 | 35                                          |
|                                                                                                           | 4.4.6.                                                | NSL-330/415/418/465/525 -13/14 combinations                                                                                                                             | 37                                          |
| 4.5.                                                                                                      | Pum                                                   | p weight                                                                                                                                                                | 39                                          |
| _                                                                                                         |                                                       |                                                                                                                                                                         |                                             |
| 5.                                                                                                        | INSI                                                  | ALLATION                                                                                                                                                                | 41                                          |
| 5.1.                                                                                                      | Mour                                                  | nting / Fastening                                                                                                                                                       | 41                                          |
| 5.2.                                                                                                      | Wirin                                                 | ng                                                                                                                                                                      | .41                                         |
|                                                                                                           |                                                       |                                                                                                                                                                         |                                             |
| 6.                                                                                                        | COM                                                   | IMISSIONING, START-UP AND SHUTDOWN                                                                                                                                      | 50                                          |
| 6.1.                                                                                                      | Prere                                                 | equisites for commissioning / start-up                                                                                                                                  | .50                                         |
| 6.2.                                                                                                      | Prim                                                  | ing and venting the pump                                                                                                                                                | .50                                         |
| 6.3.                                                                                                      |                                                       | up                                                                                                                                                                      |                                             |
|                                                                                                           |                                                       | Start-up procedure                                                                                                                                                      |                                             |
|                                                                                                           |                                                       |                                                                                                                                                                         |                                             |
| 6.4.                                                                                                      |                                                       | king the shaft seal                                                                                                                                                     |                                             |
| 6.5.                                                                                                      |                                                       | down                                                                                                                                                                    |                                             |
| 6.6.                                                                                                      | Oper                                                  | ating limits                                                                                                                                                            | 55                                          |
| 6.7.                                                                                                      | Freq                                                  | uency of starts                                                                                                                                                         | 56                                          |
| 6.8.                                                                                                      | Fluid                                                 | I handled                                                                                                                                                               | 56                                          |
|                                                                                                           | 6.8.1.                                                | Flow rate                                                                                                                                                               | 56                                          |
|                                                                                                           |                                                       |                                                                                                                                                                         |                                             |
|                                                                                                           | 6.8.2.                                                | Density of fluid handled                                                                                                                                                | .57                                         |
|                                                                                                           | 6.8.2.<br>6.8.3.                                      | Density of fluid handled<br>Abrasive fluids                                                                                                                             |                                             |
|                                                                                                           | 6.8.3.                                                |                                                                                                                                                                         | 57                                          |
| 6.9.                                                                                                      | 6.8.3.<br>Deco                                        | Abrasive fluids                                                                                                                                                         | .57<br>. <b>57</b>                          |
| 6.9.                                                                                                      | 6.8.3.<br>Decc<br>. Retu                              | Abrasive fluids                                                                                                                                                         | .57<br>. <b>57</b><br>. <b>58</b>           |
| 6.9.<br>6.10<br>7.                                                                                        | 6.8.3.<br>Decc<br>. Retu<br>TRO                       | Abrasive fluids<br>ommissioning / out of service<br>rn to service<br>UBLESHOOTING                                                                                       | .57<br>.57<br>.58<br>59                     |
| 6.9.<br>6.10<br>7.<br>7.1.                                                                                | 6.8.3.<br>Decc<br>. Retu<br>TRO<br>Mech               | Abrasive fluids<br>ommissioning / out of service<br>rn to service<br>UBLESHOOTING<br>nanical seal failure analysis                                                      | . 57<br>. 57<br>. 58<br>. 59<br>. 60        |
| 6.9.<br>6.10.<br>7.<br>7.1.<br>8.                                                                         | 6.8.3.<br>Decc<br>Retu<br>TRO<br>Mech                 | Abrasive fluids<br>ommissioning / out of service<br>rn to service<br>UBLESHOOTING<br>hanical seal failure analysis<br>PECTION AND SERVICE PLAN                          | .57<br>.57<br>.58<br>.59<br>.60<br>.65      |
| 6.9.<br>6.10<br>7.<br>7.1.                                                                                | 6.8.3.<br>Decc<br>Retu<br>TRO<br>Mech<br>INSP<br>Supe | Abrasive fluidsommissioning / out of serviceonmissioning / out of service<br>rn to service<br>UBLESHOOTING<br>Danical seal failure analysis<br>PECTION AND SERVICE PLAN | .57<br>.57<br>.58<br>59<br>.60<br>65<br>.65 |
| <ol> <li>6.9.</li> <li>6.10.</li> <li>7.</li> <li>7.1.</li> <li>8.</li> <li>8.1.</li> <li>8.2.</li> </ol> | 6.8.3.<br>Decc<br>Retu<br>TRO<br>Mech<br>INSP<br>Supe | Abrasive fluids<br>ommissioning / out of service<br>rn to service<br>UBLESHOOTING<br>hanical seal failure analysis<br>PECTION AND SERVICE PLAN<br>ervision of operation | .57<br>.57<br>.58<br>59<br>.60<br>65<br>.65 |

|      | 8.2.1.   | Cleaning filter                                                | 73  |
|------|----------|----------------------------------------------------------------|-----|
|      | 8.2.2.   | Drainage and cleaning                                          | 73  |
| 9.   | DISM     | ANTLING THE PUMP SET                                           | 75  |
| 9.1. | 02 an    | d 12 combinations                                              | 78  |
|      | 9.1.1.   | Access to impeller                                             | 78  |
|      | 9.1.2.   | Dismantling shaft seal                                         |     |
|      | 9.1.3.   | Dismantling seat                                               |     |
|      | 9.1.4.   | Dismantling bearing (only 02 combination)                      |     |
|      | 9.1.5.   | Inspection                                                     | 88  |
|      | 9.1.6.   | Dismantling coupling (02 combination) / shaft (12 combination) | 88  |
| 9.2. | 13 an    | d 14 combinations                                              | 89  |
|      | 9.2.1.   | Access to impeller                                             | 89  |
|      | 9.2.2.   | Dismantling shaft seal                                         | 92  |
|      | 9.2.3.   | Dismantling seat                                               | 94  |
|      | 9.2.4.   | Dismantling shaft with bearings                                | 94  |
|      | 9.2.5.   | Inspection                                                     | 94  |
| 10.  | ASSE     | EMBLING THE PUMP SET                                           | 95  |
| 10 1 | Tight    | ening Torques                                                  | 95  |
|      | -        | mbination                                                      |     |
|      |          | Fitting sealing rings                                          |     |
|      |          | Fitting shaft seal                                             |     |
|      |          | Fitting impeller                                               |     |
|      |          | Fitting rear cover or motor bracket                            |     |
|      |          | Shaft                                                          |     |
| 10.3 | . 02, 13 | and 14 combinations                                            | 102 |
|      | 10.3.1.  | Fitting sealing rings                                          | 102 |
|      |          | Fitting bearings or shaft with bearings                        |     |
|      |          | Fitting water deflector                                        |     |
|      | 10.3.4.  | Fitting shaft seal                                             | 106 |
|      | 10.3.5.  | Fitting impeller                                               | 107 |
|      | 10.3.6.  | Fitting bearing housing and rear cover                         | 108 |
|      | 10.3.7.  | Shaft                                                          | 109 |
|      | 10.3.8.  | Fitting coupling                                               | 110 |
| 11.  | ORD      | ERING SPARE PARTS 1                                            | 15  |
| 11.1 | . Asse   | mbly drawing NSL-215/265 -02 combination 1                     | 117 |
| 11.2 | . Spare  | e parts list NSL-215/265 -02 combination1                      | 118 |
| 11.3 | . Asse   | mbly drawing NSL-215/265 -12 combination1                      | 119 |
| 11.4 | . Spare  | e parts list NSL-215/265 -12 combination1                      | 120 |
| 11.5 | . Asse   | mbly drawing NSL-215/265 -S12 combination1                     | 121 |
| 11.6 | . Spare  | e parts list NSL-215/265 -S12 combination1                     | 122 |

| 11.7.  | Assembly drawing NSL-330/415/465 -02 combination    | 123 |
|--------|-----------------------------------------------------|-----|
| 11.8.  | Spare parts list NSL-330/415/465 -02 combination    | 124 |
| 11.9.  | Assembly drawing NSL-330/415/465 -12 combination    | 125 |
| 11.10. | Spare parts list NSL-330/415/465 -12 combination    | 126 |
| 11.11. | Assembly drawing NSL300-418 -02 combination         | 127 |
| 11.12. | Spare parts list NSL300-418 -02 combination         | 128 |
| 11.13. | Assembly drawing NSL300-418 -12 combination         | 129 |
| 11.14. | Spare parts list NSL300-418 -12 combination         | 130 |
| 11.15. | Assembly drawing NSL200/250/300-525 -02 combination | 131 |
| 11.16. | Spare parts list NSL200/250/300-525 -02 combination | 132 |
| 11.17. | Assembly drawing NSL200/250/300-525 -12 combination | 133 |
| 11.18. | Spare parts list NSL200/250/300-525 -12 combination | 134 |
| 11.19. | Assembly drawing NSL350-525 -02 combination         | 135 |
| 11.20. | Spare parts list NSL350-525 -02 combination         | 136 |
| 11.21. | Assembly drawing NSL350-525 -12 combination         | 137 |
| 11.22. | Spare parts list NSL350-525 -12 combination         | 138 |
| 11.23. | Assembly drawing NSL-215/265 -14 combination        | 139 |
| 11.24. | Spare parts list NSL-215/265 -14 combination        | 140 |
| 11.25. | Assembly drawing NSL-330/415/465 -14 combination    | 141 |
| 11.26. | Spare parts list NSL-330/415/465 -14 combination    | 142 |
| 11.27. | Assembly drawing NSL300-418 -14 combination         | 143 |
| 11.28. | Spare parts list NSL300-418 -14 combination         | 144 |
| 11.29. | Assembly drawing NSL200/250/300-525 -14 combination | 145 |
| 11.30. | Spare parts list NSL200/250/300-525 -14 combination | 146 |
| 11.31. | Assembly drawing NSL350-525 -14 combination         | 147 |
| 11.32. | Spare parts list NSL350-525 -14 combination         | 148 |
| APPE   | NDIX A                                              | 149 |
| APPE   | NDIX B                                              | 151 |



## **1. GENERAL DESCRIPTION**

These operation and maintenance instructions apply to both DESMI NSL pumps in Monobloc and Spacer design. After the publish of this manual, the original manual will no longer apply to the products for subsequent shipments. But the original manual still applies to the past or in-use products. Desmi reserves the right to make any type of update, without prior notice and obligation to update previous manuals. The latest version of the manual is acquirable by scanning the QR code in the front page of this manual.

The pump is particularly suitable for the pumping of water in connection with cooling systems, cooling of diesel engines, as bilge pumps, ballast pumps, fire pumps, brine pumps, pumps for irrigation, fish farms, water works, district heating, salvage corps, army and navy, etc.

The pump is a single-stage vertical "in-line" centrifugal pump (i.e. horizontal inlet and outlet on the same line) equipped with stainless steel shaft, mechanical shaft seal, and closed impeller.

The pump shaft, with or without ball bearing mounted on it, is coupled with electric motor shaft either by rigid coupling or by flexible coupling.

The pump suction and discharge ports are casted flanges which comply with European Union flange standards as well as other compatible flange standards , e.g., ASME, ISO and JIS standards.

The pump has various options and combinations for the wet part material to fulfil desired applications. The options and combinations include cast iron, copper alloy and stainless steel in different grades.

The pump couples with electric motors that comply with IEC or NEMA standards. The pump can also be customized to couple with other kinds of engines, e.g. hydraulic motor, diesel engine, which is special engineering to order products and specific operation and maintenance instructions are applied.

The operation and maintenance instructions include descriptions for two product groups based on their different designs, *ø*215/265 and *ø*330/415/418/525. The numbers refer to the standard impeller diameter of the pump.

Ø215/265: Pumps with ø215 or ø265 impellers:

The impeller is equipped with one sealing ring. The line through inlet and outlet is flush with the center line of the shaft.

Ø330/415/418/465/525: Pumps with ø330, ø415, ø418, ø465 or ø525 impellers:

The impeller is equipped with two sealing rings. The line through inlet and outlet is offset in relation

to the center line of the shaft. Pumps delivered by us connected with prime movers are CE-marked and comply with the above requirements.

## 1.1. General

This manual contains general installation, operation and maintenance instructions that must be observed to ensure safe pump operation and prevent personal injury and damage to property.

The safety information in all sections of this manual must be complied with. This manual must be read and completely understood by the specialist personnel /operators responsible, prior to installation and commissioning.

The content of this manual must be available to the specialist personnel at the site at all times.

Information attached directly to the pump must always be complied with and be kept in a perfectly legible condition at all times. This applies to, for example:

- Arrow indicating the direction of rotation
- Marking for connections
- Name plate

The operator is responsible for ensuring compliance with all local regulations not taken into account in this manual.

## 1.2. Personnel qualification and training

All personnel involved must be fully qualified to transport, install, operate, maintain and inspect the machinery this manual refers to. The responsibilities, competence and supervision of all personnel involved in transport, installation, operation, maintenance and inspection must be clearly defined by the operator.

Deficits in knowledge must be rectified by means of training and instruction provided by sufficiently trained specialist personnel. If required, the operator can commission the manufacturer / supplier to train the personnel. Training on the pump (set) must always be supervised by technical specialist personnel.

## 1.3. EU & UK declaration of conformity

DESMI PUMPING TECHNOLOGY A/S, hereby declare that our pumps of NSL Monobloc & Spacer type are manufactured in conformity with the following essential safety and health requirements in the COUNCIL DIRECTIVE 2006/42/EC on machines, Annex 1.

The following harmonized standards have been used:

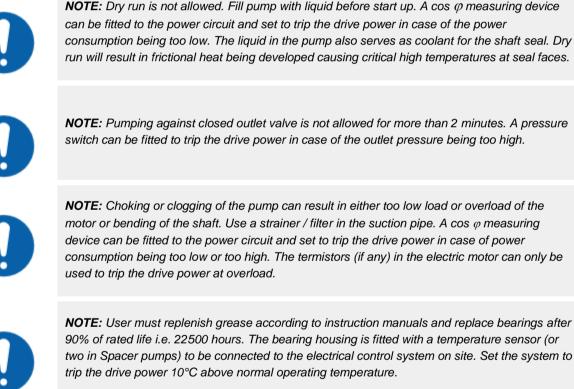
| EN/ISO 13857:2019                  | Safety of machinery. Safety distances to prevent danger zones<br>being reached by the upper limbs                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| EN 809:1998 + A1:2009              | Pumps and pump units for liquids – Common safety requirements                                                                                          |
| EN12162:2001+A1:2009               | Liquid pumps – Safety requirements – Procedure for hydrostatic testing                                                                                 |
| EN 60204-1:2018                    | Safety of machinery – Electrical equipment of machines (item 4, General requirements)                                                                  |
| Ecodesign Directive (2009/125/EC). | Water pumps: Commission Regulation No 547/2012.<br>Applies only to water pumps marked with the minimum efficiency<br>index MEI. See pump nameplate     |
| Directive 2014/34/EU               | Equipment and protective systems intended for use in potentially<br>explosive atmospheres.<br>Applies only to pumps marked with Ex. See pump nameplate |

Pumps delivered by us connected with prime movers are CE-marked and comply with the above requirements.

Pumps delivered by us without prime movers (as partly completed machinery) must only be used when the prime mover and the connection between prime mover and pump comply with the above requirements.

Nørresundby, September. 20 2024

Henrik Mørkholt Sørensen Managing Director DESMI Pumping Technology A/S Tagholm 1, 9400 Nørresundby


## DESM 1.4. ATEX declaration of conformity

### 1.4.1. Product description

The precautions to be taken using the pumps in areas where the ATEX rules for "Ex II 2G Ex h IIb T4 Gb X" marked equipment apply. Only pumps mounted with EX-marked nameplate from DESMI are approved for / allowed to be used in EX areas.

The pumps have been examined according to EN80079-36:2016 and EN80079-37:2016. Constructional safety "c" and an Ignition Hazard Assessment has been made. As a result of this assessment the following precautions are to be taken.

#### 1.4.2. Precautions



NOTE: User must replenish grease according to instruction manuals and replace bearings after 90% of rated life i.e. 22500 hours. The bearing housing is fitted with a temperature sensor (or two in Spacer pumps) to be connected to the electrical control system on site. Set the system to trip the drive power 10°C above normal operating temperature.





**NOTE:** Max. allowed liquid temperature is 80°C for fresh water and most likely less for other liquids. The pump housing can be fitted with a temperature sensor to be connected to the electrical control system on site and then set this to trip the drive power 10°C above normal operating temperature. Contact DESMI in case of doubt about max. allowed liquid temperature.

Nørresundby, September 20 2024

Henrik Mørkholt Sørensen Managing Director DESMI Pumping Technology A/S Tagholm 1, 9400 Nørresundby

## 1.5. Information relevant for disassembly or disposal at end-of-life

No harmful materials are used in DESMI pumps – please refer to DESMI Green Passport (can be sent on request – contact a DESMI sales office) – i.e. common recycling companies can handle the disposal at end-of-life. Alternatively the pump and motor can be returned to DESMI at end-of-life for safe recycling.



## 2. SAFETY

All the information contained in this section refers to hazardous situations.

## 2.1. Key to safety symbols/markings

#### 2.1.1. Signal words

The following signal words and symbols are used to identify safety messages in these instructions:

| A DANGER    | <b>DANGER</b> indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| ▲ WARNING   | <b>WARNING</b> indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.      |
| CAUTION     | <b>CAUTION</b> indicates a hazard with a low level of risk which, if not avoided, could result in damage to the product or system. |
| Information | n with this heading is used to address practices not related to personal injury.                                                   |

#### 2.1.2. Hazard symbols



#### General hazard

In conjunction with one of the signal words, this symbol indicates a hazard which will or could result in death or serious injury.



#### **Electrical hazard**

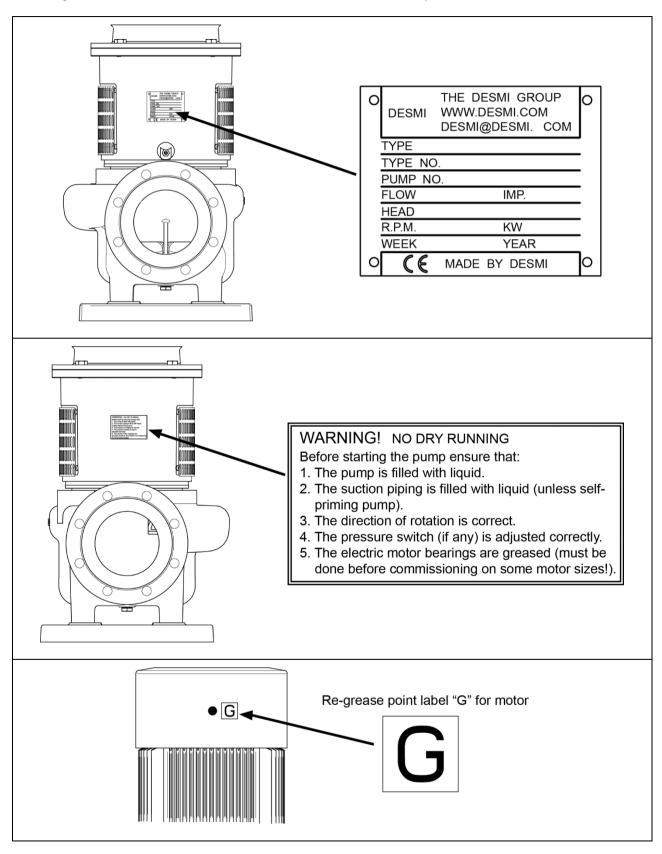
In conjunction with one of the signal words, this symbol indicates a hazard involving electrical voltage and identifies information about protection against electrical voltage.



#### Explosion protection

This symbol identifies information about avoiding explosions in potentially explosive atmospheres in accordance with EC Directive 2014/34/EU (ATEX).




#### Machine damage

In conjunction with the signal word CAUTION, this symbol indicates a hazard for the machine and its functions.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tif. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com

#### 2.1.3. Labels on the product

The diagrams below indicate the location of the machine's safety and information labels.



## **DESMI** 2.2. Intended use

- The pump (set) must only be operated within the operating limits described in the other applicable documents.
- Only operate pumps / pump sets which are in perfect technical condition.
- Do not operate the pump (set) in partially assembled condition.
- Only use the pump to handle the fluids described in the order or product literature of the pump model or variant.
- Never operate the pump without the fluid to be handled.
- Observe the information on minimum flow rates specified in the product literature (to prevent overheating, bearing damage, etc.).
- Observe the information on maximum flow rates specified in the product literature (to prevent overheating, mechanical seal damage, cavitation damage, bearing damage, etc.).
- Do not throttle the flow rate on the suction side of the pump (to prevent cavitation damage).
- Consult the manufacturer about any other modes of operation not described in the product literature.

#### Prevention of foreseeable misuse

- Never open the discharge-side shut-off elements further than permitted.
  - The maximum flow rate specified in the technical product literature would be exceeded.
  - Risk of cavitation damage
- Never exceed the permissible operating limits (pressure, temperature, etc.) specified in the product literature.
- Observe all safety information and instructions in this manual.



# 2.3. Consequences and risks caused by non-compliance with this manual

- Non-compliance with this manual will lead to forfeiture of warranty cover and of any and all rights to claims for damages.
- Non-compliance can, for example, have the following consequences:
  - Hazards to persons due to electrical, thermal, mechanical and chemical effects and explosions
  - Failure of important product functions
  - Failure of prescribed maintenance and servicing practices
  - Hazard to the environment due to leakage of hazardous substances.

### 2.4. Safety awareness

In addition to the safety information contained in this manual and the intended use, the following safety regulations shall be complied with:

- Accident prevention, health and safety regulations
- Explosion protection regulations
- Safety regulations for handling hazardous substances
- Applicable standards, directives and laws

### 2.5. Safety information for the operator/user

- The operator shall fit contact guards for hot, cold and moving parts and check that the guards function properly.
- Do not remove any contact guards during operation.
- Provide the personnel with protective equipment and make sure it is used.
- Contain leakages (e.g. at the shaft seal) of hazardous fluids handled (e.g. explosive, toxic, hot) so as to avoid any danger to persons and the environment. Adhere to all relevant laws.
- Eliminate all electrical hazards. (In this respect, refer to applicable national safety regulations and/or regulations issued by the local energy supply companies.)
- If shutting down the pump does not increase potential risk, fit an emergency stop control device in the immediate vicinity of the pump (set) during pump set installation.

## 2.6. Safety information for maintenance, inspection and installation

- Modifications or alterations of the pump are only permitted with the manufacturer's prior consent.
- Use only original spare parts or parts authorised by the manufacturer. The use of other parts can invalidate any liability of the manufacturer for resulting damage.
- The operator ensures that maintenance, inspection and installation is performed by authorised, qualified specialist personnel who are thoroughly familiar with the manual.
- Only carry out work on the pump (set) during standstill of the pump.
- The pump casing must be cooled down to ambient temperature.
- Pump pressure must be released and the pump must have been drained.
- When taking the pump set out of service, always adhere to the procedure described in the manual.
- Decontaminate pumps which handle fluids posing a health hazard.
- As soon as the work is completed, re-install and/or re-activate any safety relevant and protective devices. Before returning the product to service, observe all instructions on commissioning.

### 2.7. Unauthorised modes of operation

Never operate the pump (set) outside the limits stated in the order documentation and in this manual. The warranty relating to the operating reliability and safety of the supplied pump (set) is only valid if the equipment is used in accordance with its intended use.

## 2.8. Explosion protection

DESM

Always observe the information on explosion protection given in this section when operating the product in potentially explosive atmospheres. Only pumps/pump sets marked as explosion-proof and identified as such in the data sheet may be used in potentially explosive atmospheres.

Special conditions apply to the operation of explosion-proof pump sets to EU Directive 2014/34/EU (ATEX). Especially adhere to the sections in this manual marked with the Ex symbol and the following sections.

The explosion-proof status of the pump set is only assured if the pump set is used in accordance with its intended use. Never operate the pump set outside the limits stated in the data sheet and on the name plate. Prevent impermissible modes of operation at all times.

#### 2.8.1. Marking

The marking on the pump refers to the pump part only. DESMI's standard EX marking for NSL pumps is: Ex II 2G Ex h IIb T4 Gb X.

The motor has its own marking. The marking is maintained on the condition that the temperatures the pump causes to develop at the motor flange and motor shaft are permitted by the motor manufacturer. The motors used DESMI on pumps with ATEX certification meet this condition.

#### 2.8.2. Temperature limits

In normal pump operation, the highest temperatures are to be expected on the surface of the pump casing and at the shaft seal. The surface temperature at the pump casing corresponds to the temperature of the fluid handled. If the pump is heated in addition, the operator of the system is responsible for observing the specified temperature class and fluid temperature (operating temperature). The max. allowed liquid temperature is 80°C for fresh water and most likely less for other liquids.

If the pump is to be operated at a higher temperature or if the pump is part of a pool of pumps, contact DESMI for the maximum permissible operating temperature.

If a pump is supplied without motor (as part of a pool of pumps), the motor specified in the order documentation of the pump must meet the following conditions:

- The permissible temperature limits at the motor flange and motor shaft must be higher than the temperatures generated by the pump.
- Contact DESMI for the actual pump temperatures.

#### 2.8.3. Monitoring equipment

The pump (set) must only be operated within the limits specified in the order documentation and on the name plate. If the system operator cannot warrant compliance with these operating limits, appropriate monitoring devices must be used. Check whether monitoring equipment is required to ensure that the pump set functions properly.

Contact DESMI for further information on monitoring equipment.

#### 2.8.4. Operating limits

Refer to the *chapter* 1.4 – i.e. if there's a risk of too high liquid temperatures, then a PT100 sensor should be mounted in the pump casing. As standard the max. allowed liquid temperature is 80°C for ATEX marked NSL pumps.

## 

Pumps which are not in operation during frost periods are to be drained to avoid frost damage. Remove the plug (3) at the bottom to empty the pump. Alternatively, it is possible to use antifreeze liquids in normal pump configurations.



## 3. TRANSPORTATION, PREVENTATION AND TEMPORARY STORAGE

### 3.1. Checking the condition upon delivery

- 1. On transfer of goods, check each packaging unit for damage.
- 2. In the event of in-transit damage, assess the exact damage, document it and notify DESMI or the supplying dealer (as applicable) and the insurer about the damage in writing immediately.

### 3.2. Transport

#### **A** DANGER

#### FALLING OBJECT HAZARD!



The pump (set) could slip out of the suspension arrangement, which will cause death or serious injury

Always transport the pump (set) in the specified position.

Do not attach the suspension arrangement to the free shaft end or the motor eyebolt.

Monitor the weight data and the centre of gravity.

Obey the applicable local health and safety regulations.

Use suitable, permitted lifting accessories, for example, self-tightening lifting tongs.

#### CAUTION



#### **RISK OF DAMAGING TO THE SHAFT SEAL!**

Transport the pump incorrectly could cause damage to the shaft seal!

To transport the pump / pump set from the lifting, tackle as shown below.

Before shipment, fasten the pump securely on pallets or the like.

The weights of the pumps are given in *chapter 4.5*. The weight of the motor is given in motor operation manual. It can be found in

- Shipping documents together with the cargo
- Shipping mark on cargo box
- Other documents for the shipment, contracts or orders, etc.



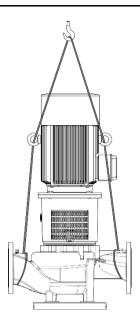



Figure 3-1: Transport



NOTE: The lifting straps must not bear against sharp edges and corners.



### 3.3. Storage/Preservation

If commissioning is to take place some time after delivery, we recommend that the following measures be taken for pump (set) storage.

#### CAUTION

#### **RISK OF PROPERTY DAMAGE!**

Incorrect storage condition could cause damage to the pump (set)!

Make sure that the storage space is in correct humidity.

Make sure that the storage location is clean and without vermin.

For outdoor storage, cover the packed or unpacked pump (set) and accessories with waterproof material.

#### CAUTION



#### RISK OF PROPERTY DAMAGE!

Wet, contaminated or damaged openings and connections could cause leakage or damage to the pump!

When you put the pump into storage, clean and cover the pump openings and connections as needed.

Store the pump (set) in a dry, protected room where the atmospheric humidity is as constant as possible. Rotate the shaft by hand once a month. For storing a pump (set) that was operated, the shutdown measures must be adhered to.

See also: DESMI Pump Storage and Preservation at:

www.desmi.com/media/vgkjgh54/t1534uk.pdf

#### 3.4. Return to supplier

- 1. Drain the pump as per operating instructions.
- 2. Always flush and clean the pump, particularly if it was used for handling noxious, explosive, hot or other hazardous fluids.
- 3. If the pump set handled fluids whose residues could lead to corrosion damage in the presence of atmospheric humidity or could ignite upon contact with oxygen, the pump set must also be neutralised, and anhydrous inert gas must be blown through the pump to ensure drying.
- 4. Always complete and enclose a certificate of decontamination when returning the pump (set). Always indicate any safety and decontamination measures taken.



#### **⚠ WARNING**

#### ENVIRONMENTAL AND HEALTH HAZARD!



The pump might contain fluids that could cause harm to the environment and your health.

Obey all legal regulations on the disposal of fluids posing a health hazard.

Collect and properly dispose of flushing fluid and any residues of the fluid handled.

Handle the chemicals and machine components according to instructions and local regulations.

Wear safety clothing and a protective mask. Obey the instructional material.

1. Dismantle the pump (set).

Collect greases and other lubricants during dismantling.

- 2. Separate and sort the pump materials, e.g. by:
  - Metals
  - Plastics
  - Rubber
  - Electronic waste
  - Greases and other lubricants
- 3. Dispose of materials in accordance with local regulations or in another controlled manner.

## **4. TECHNICAL SPECIFICATION**

#### 4.1. Work range

The working range depends on the basic hydraulic design, the type of connection and sealings. The module in the pumps with the strictest specification determines the allowable pressure and temperature of the medium in the pumps. Pumps with ATEX (explosion safety) marking, which are applied in explosive hazardous atmospheres, have an additional restriction of the medium temperature. The general working specifications can be summarized as follows:

#### Media temperature range for:

Lower limit temperature: - 20°C (minus 40°C for brine pumps in ductile iron with spec. seal)

Upper limit temperature: +80°C for fresh water (up to 150°C with special shaft seal),

+40°C for sea water (up to +60°C seawater in Super Duplex pumps

with special shaft seal)

(The pump is suitable for pumping of clean fresh water with temperatures up to 100 °C when ball bearing mounted on pump shaft, and up to 140 °C when without ball bearing mounted on pump shaft. For pumping of clean fresh water with temperatures above 100 °C, DESMI only delivers ductile iron (for instance GGG40) or martensitic stainless steel (for instance 1.4436) for pump casing and rear cover.)

#### Ambient temperature range for:

Lower limit temperature: - 20 °C

Upper limit temperature: + 45 °C

(1. Avoid freezing the pump.

2. If the ambient temperature exceeds the above value or the motor is located more than 1000 m above sea level, the motor cooling is less effective and could require an adapted motor power. Please contact your supplier for more detailed advice.)

#### Media density and viscosity

Density: Max. 2500 kg/m3

Viscosity: Max. 500 cSt.

(Pumping liquids with a higher density and/or viscosity than water requires more mechanical torque from pump shaft and more power from the electric motor. This could cause overloading of the pump shaft and motor. Contact your supplier for advice, if needed.)



During DESMI factory testing the accumulated vibration on pump shall be less than 2.8mm/s. Adding any external excited vibrations on site the pump vibrations to be less than 7 mm/s otherwise anti-vibration foundation or other vibration reduction measure on pump to be applied. Refer to DESMI Installation Guidelines at:

http://www.desmi.com/media/sd5ltlox/guidelines\_uk.pdf

#### **Minimum inlet pressure**

NPSH<sub>req</sub> + Suction pipework friction + Fluid vapour pressure – Fluid surface pressure+0.5m

(It is the pressure that will not lead pump cavitation in specific pump operational conditions and specific pumping media. NPSHreq. is given in the contract technical documentation.)

#### Maximum inlet pressure

#### Pump maximum working pressure - pump shut head

(It is the pressure that shall not lead pump outlet pressure to excess pump allowed maximum working pressure in specific pump operational conditions and specific pumping media. Pump maximum working pressure and shut head is given in the technical documentation.)

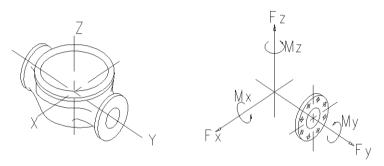
#### Minimum number of revolution

The minimum number of revolutions depends on the minimum revolution number of the coupled motor. Refer to motor operation manual or contact motor supplier for the minimum revolution number of the motor, if needed.

#### Maximum number of revolution

The following number of revolutions are allowed in standard pumps.

| Pump       | Max. RPM | Pump       | Max. RPM | Pump       | Max. RPM |
|------------|----------|------------|----------|------------|----------|
| NSL80-215  | 3600     | NSL125-415 | 1800     | NSL250-330 | 1800     |
| NSL80-265  | 3600     | NSL150-215 | 1800     | NSL250-415 | 1800     |
| NSL80-330  | 3600     | NSL150-265 | 1800     | NSL250-525 | 1800     |
| NSL100-215 | 3600     | NSL150-330 | 1800     | NSL300-415 | 1800     |
| NSL100-265 | 3600     | NSL150-415 | 1800     | NSL300-418 | 1800     |
| NSL100-330 | 3000     | NSL200-265 | 1800     | NSL300-465 | 2000     |
| NSL100-415 | 1800     | NSL200-330 | 1800     | NSL300-525 | 1800     |


| Pump       | Max. RPM | Pump       | Max. RPM | Pump       | Max. RPM |
|------------|----------|------------|----------|------------|----------|
| NSL125-215 | 3600     | NSL200-415 | 1800     | NSL350-525 | 1600     |
| NSL125-265 | 3600     | NSL200-525 | 1800     |            |          |
| NSL125-330 | 1800     | NSL250-265 | 1800     |            |          |

Notice: Some pumps allow higher speeds than stated in the table, see actual pump name plate.

(The real operation number of revolution is given in the contract technical documentation, which also might be less than the number in the table, because in specific applications, pumping liquids with a higher density and/or viscosity than water require more torque from pump shaft and more mechanical power from the electric motor. This could cause overloading of the pump shaft and the motor. Contact your supplier for advice, if needed.)

#### The permissible loads on the flanges

The permissible loads on the flanges are indicated in the following table. The values apply to standard pumps in bronze (Rg5) and cast iron (GG20). As for pumps in SG iron (GGG40), NiAlBz or stainless steel, the values are to be increased by factor 1.5.



| Pump                                                 | Fy N | Fz N | Fx N | ∑F   | My Nm | Mz Nm | Mx Nm | ∑ Mt |
|------------------------------------------------------|------|------|------|------|-------|-------|-------|------|
| NSL80-215<br>NSL80-265<br>NSL80-330                  | 800  | 950  | 850  | 1500 | 550   | 350   | 400   | 750  |
| NSL100-215<br>NSL100-265<br>NSL100-330<br>NSL100-415 | 1000 | 1250 | 1150 | 2000 | 650   | 400   | 500   | 900  |
| NSL125-215<br>NSL125-265<br>NSL125-330<br>NSL125-415 | 1250 | 1600 | 1430 | 2500 | 830   | 520   | 650   | 1160 |
| NSL150-215<br>NSL150-265<br>NSL150-330<br>NSL150-415 | 1500 | 1900 | 1700 | 2950 | 1000  | 650   | 800   | 1400 |

Figure 4-1: The permissible loads on the flanges

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



| Pump                                                 | Fy N | Fz N | Fx N | ∑F   | My Nm | Mz Nm | Mx Nm | ∑ Mt |
|------------------------------------------------------|------|------|------|------|-------|-------|-------|------|
| NSL200-265<br>NSL200-330<br>NSL200-415<br>NSL200-525 | 2000 | 2520 | 2260 | 3920 | 1330  | 860   | 1060  | 1860 |
| NSL250-265<br>NSL250-330<br>NSL250-415<br>NSL250-525 | 2500 | 3150 | 2820 | 4900 | 1770  | 1140  | 1400  | 2470 |
| NSL300-415<br>NSL300-418<br>NSL300-465<br>NSL300-525 | 3000 | 3750 | 3350 | 5860 | 2750  | 1900  | 2200  | 4000 |
| NSL350-525                                           | 3500 | 4370 | 3920 | 6840 | 3630  | 2500  | 2930  | 5300 |

In connection with the permissible loads on the flanges, the following is to be observed

$$\left(\frac{\sum F \ calc}{\sum F}\right)^2 + \left(\frac{\sum M \ calc}{\sum M_t}\right)^2 < 2$$

Where index "calc" is the valves calculated by the user.

At the same time, none of the forces or moments may exceed the indicated figure multiplied by 1.4.

## 4.2. Technical data

#### 4.2.1. Maximum work pressure

The following working pressures (pressure in piping incl. the pressure rise caused by the pump) are allowed in standard pumps.

| Pump       | Pressure<br>[bar]<br>Rg5/<br>CC491K | Pressure<br>[bar]<br>GG20/<br>EN-GJL-200 | Pressure<br>[bar]<br>GGG40/<br>EN-GJS-<br>400-15 | Pump       | Pressure<br>[bar]<br>Rg5/<br>CC491K | Pressure<br>[bar]<br>GG20/<br>EN-GJL-200 | Pressure<br>[bar]<br>GGG40/<br>EN-GJS-<br>400-15 |
|------------|-------------------------------------|------------------------------------------|--------------------------------------------------|------------|-------------------------------------|------------------------------------------|--------------------------------------------------|
| NSL80-215  | 16                                  | 16                                       | 25                                               | NSL150-415 | 9                                   | 13                                       | 25                                               |
| NSL80-265  | 14,5                                | 14,5                                     | 25                                               | NSL200-265 | 9                                   | 9                                        | 25                                               |
| NSL80-330  | 15                                  | 15                                       | 25                                               | NSL200-330 | 7                                   | 13                                       | 25                                               |
| NSL100-215 | 13                                  | 13                                       | 25                                               | NSL200-415 | 9                                   | 13                                       | 25                                               |
| NSL100-265 | 14,5                                | 14,5                                     | 25                                               | NSL200-525 | 14                                  | 14                                       | 25                                               |
| NSL100-330 | 8                                   | 14                                       | 25                                               | NSL250-265 | 10                                  | 10                                       | 25                                               |
| NSL100-415 | 10                                  | 12,5                                     | 25                                               | NSL250-330 | 7                                   | 12                                       | 25                                               |

| Pump       | Pressure<br>[bar]<br>Rg5/<br>CC491K | Pressure<br>[bar]<br>GG20/<br>EN-GJL-200 | Pressure<br>[bar]<br>GGG40/<br>EN-GJS-<br>400-15 | Pump       | Pressure<br>[bar]<br>Rg5/<br>CC491K | Pressure<br>[bar]<br>GG20/<br>EN-GJL-200 | Pressure<br>[bar]<br>GGG40/<br>EN-GJS-<br>400-15 |
|------------|-------------------------------------|------------------------------------------|--------------------------------------------------|------------|-------------------------------------|------------------------------------------|--------------------------------------------------|
| NSL125-215 | 10                                  | 10                                       | 25                                               | NSL250-415 | 9                                   | 12                                       | 25                                               |
| NSL125-265 | 14,5                                | 14,5                                     | 25                                               | NSL250-525 | 14                                  | 14                                       | 25                                               |
| NSL125-330 | 7                                   | 12                                       | 25                                               | NSL300-415 | 9                                   | 12                                       | 25                                               |
| NSL125-415 | 9                                   | 13                                       | 25                                               | NSL300-418 | 6                                   | 16                                       | 25                                               |
| NSL150-215 | 8                                   | 8                                        | 25                                               | NSL300-465 | 9                                   | 14                                       | 25                                               |
| NSL150-265 | 7                                   | 7                                        | 25                                               | NSL300-525 | 14                                  | 14                                       | 25                                               |
| NSL150-330 | 7                                   | 13                                       | 25                                               | NSL350-525 | 10                                  | 16                                       | 25                                               |

The max. working pressure for NiAlBz/CC333G and stainless-steel (Refer 1.4410&1.4436) pumps is 1.5 times max. working pressure for bronze (RG5/CC491K).

The above-mentioned max. working pressure is a design value – delivered pumps are pressure tested according to actual application requirements or actual flange standards.

For instance, the above-mentioned max. working pressure is **NOT** valid for pumps approved by a classification society. Pumps approved by classification societies are pressure tested according to the requirements of these societies, i.e. a test pressure of 1.5 x the permissible working pressure. The test pressure is stated in the test certificate and stamped into the discharge flange of the pump.

#### 4.2.2. Noise emission

The noise level indicated is the airborne noise including the motor. The noise level depends on the motor type supplied, as the noise from the pump can be calculated as the noise level of the motor + 2dB(A). The noise level is for pumps with electric motors.

The motor noise in rated work condition is given in motor operation manual.

# 4.2.3. Generated vibration

The pump vibration at rated work condition is less than 2.8 mm/s which are measured on designated position.

The vibration can change when work condition changes, e.g. rotation speed, duty point shift by external force, liquid type, etc.

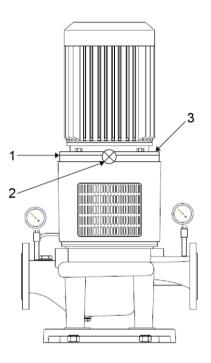



Figure 4-2: Vibration measuring position

### 4.2.4. Hydraulic capacity

The capacity of flow and head of the pump is stated on the name plate on the pump. If the pump is delivered without motor, the pump capacity is to be indicated on the plate when mounting the motor.

#### 4.2.5. Allowed maximum motor frame size

| Pump size | Pump Structure       | Motor range |  |  |  |
|-----------|----------------------|-------------|--|--|--|
| ø215      | 02 combination       | ≤225        |  |  |  |
| ø215      | 12 combination       | ≤180        |  |  |  |
| ø215      | 13 or 14 combination | ≤250        |  |  |  |
| ø215      | 15 combination       | ≤280        |  |  |  |
| ø265      | 02 combination       | ≤280        |  |  |  |
| ø265      | 12 combination       | ≤200        |  |  |  |

| Pump size | Pump Structure               | Motor range |  |  |  |
|-----------|------------------------------|-------------|--|--|--|
| ø265      | 13 or 14 combination         | ≤280        |  |  |  |
| ø265      | 15 combination               | ≤315        |  |  |  |
| ø330      | 02, 12, 13 or 14 combination | ≤315        |  |  |  |
| ø415/418  | 02, 12, 13 or 14 combination | ≤355        |  |  |  |
| ø465      | 02, 12 or 14 combination     | ≤400        |  |  |  |
| ø525      | 02, 12 or 14 combination     | ≤450        |  |  |  |

### 4.3. Name plate

All the NSL pumps are provided with a name plate on body to describe pump hydraulic and mechanical specification.

(Individual motor name plate on motor body, of which description is given in motor operation manual.)

| 0 | DESMI    | THE DESMI GROUP<br>WWW.DESMI.COM<br>DESMI@DESMI.COM | 0 |  |  |  |  |  |
|---|----------|-----------------------------------------------------|---|--|--|--|--|--|
|   | TYPE     |                                                     |   |  |  |  |  |  |
|   | TYPE NO. |                                                     |   |  |  |  |  |  |
|   | PUMP NO. |                                                     |   |  |  |  |  |  |
|   | FLOW     | IMP.                                                |   |  |  |  |  |  |
|   | HEAD     |                                                     |   |  |  |  |  |  |
|   | R.P.M.   | KW                                                  |   |  |  |  |  |  |
|   | WEEK     | YEAR                                                |   |  |  |  |  |  |
| 0 | CE       | MADE BY DESMI                                       | 0 |  |  |  |  |  |

Figure 4-3: Name plate with CE mark

| ODESMI  | THE DESMI GROUP<br>WWW.DESMI.COM | 0 |
|---------|----------------------------------|---|
|         | DESMI@DESMI. COM                 |   |
| TYPE    |                                  | _ |
| TYPE NO | ).                               | - |
| PUMP N  | 0.                               | - |
| FLOW    | IMP.                             | - |
| HEAD    |                                  | _ |
| R.P.M.  | KW                               |   |
| WEEK    | YEAR                             | - |
| 0       | MADE BY DESMI                    | 0 |

Figure 4-4: Name plate without CE mark

#### 4.3.1. Explanation of the type

The pumps are manufactured in various size, materials and configurations which are started in the type description on the name plate. See below.

NSLXXX-YYY-MR-Z

XXX: Pressure branch diameter

- YYY: Norminal impeller diameter
- M: The material combination of the pump.
- R: The assembly combination of the pump.
- Z: Other variants
- M may be the following:



| A: | Casing and rear cover: Cast iron + cast iron alloy. Impeller and sealing rings:<br>NiAlBz/CC333G                 |
|----|------------------------------------------------------------------------------------------------------------------|
| B: | Casing and rear cover: Cast iron + cast iron alloy. Impeller and sealing rings: Stainless.                       |
| C: | All cast iron                                                                                                    |
| D: | Casing and rear cover: Bronze Rg5/CC491K or NiAlBz/CC333G. Impeller and sealing rings: NiAlBz or Stainless steel |
| E: | Casing and rear cover: NiAlBz /CC333G and bronze alloy. Impeller and sealing rings: NiAlBz/CC333G                |
| S: | Casing, rear cover, impeller and sealing rings: 1.4410 or stainless steel alloy.                                 |
| U: | Nonmagnetic material                                                                                             |

The pumps can be delivered in other material combinations according to agreement with the supplier.

R may be the following:

| 02: | Monobloc, with bearing in the pump                                            |
|-----|-------------------------------------------------------------------------------|
| 12: | Monobloc, without bearing in the pump                                         |
| 13: | Spacer, light bearing housing                                                 |
| 14: | Spacer, heavy bearing housing                                                 |
| 15: | Spacer, heavy bearing housing and heavy motor bracket (special motor bracket) |

#### Z may be the following:

| i: | PN16 flanges      |
|----|-------------------|
| j: | PN25 flanges      |
| k: | Special flange    |
| I: | Other shaft seal  |
| m: | BS flanges        |
| n: | ANSI flanges      |
| o: | Shockproof design |
| p: | Other design      |
| q: | JIS flanges       |

Any use of the pump is to be evaluated on the basis of the materials used in the pump. In case of doubt, contact the supplier.

Pumps in material combinations A, B and C are primarily used for fresh water. Pumps in material combination D, S are primarily used for seawater.

If the pumps are designed for special purposes, the following is to be indicated:

1. Pump No.

#### 2. Pump type



- 3. Application
- 4. Comment

#### 4.3.2. Explanation of the type number and pump number

The type number is a number to describe the main feature configuration of the pumps.

**The pump number** is a serial number to identify individual pump contract and manufacture information for service and spare parts ordering. The pump number can also be found on technical documentation.

#### 4.3.3. Explanation of pump performance

**M3/HOUR & TOTAL HEAD M** is rated flow and corresponding total head, which is achievable by the pump by verification, or by test on mutual agreement. If test is performed, ISO9906 Grade 2B is applied as DESMI standard, or other test standard on mutual agreement.

**IMP** is impeller's real diameter after trimming to obtain rated flow and total head. IMP is a necessary pump specification in spare parts ordering.

**RPM** is pump rotation speed given from motor to obtain the rated flow and total head. The real pump rotation speed can have minor shift due to real load on the motors.

**KW** is the required nominal motor power output, which is greater than pump power consumption to avoid motor overloading.

WEEK and YEAR is manufacturing completion date.

## **DESMI** 4.4. Dimensional drawing

All the flanges in the manual are drilled according to EN1092 PN10. Some products may differ from PN10 in dimension ØD. Customized drilling solutions are available upon request.

## 4.4.1. NSL-215/265 -02 combination

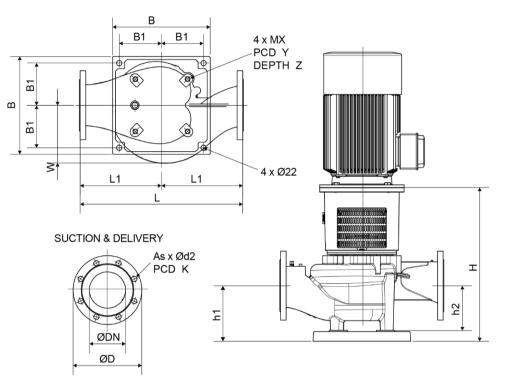



Figure 4-5: Ø215/265-02 combination

| Туре       | н   | h1  | h2  | L   | L1  | w   | DN  | D   | d2 | к   | x  | Y   | z  | В   | B1  | As |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|-----|----|
| NSL80-215  | 567 | 200 | 155 | 530 | 265 | 163 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL80-265  | 574 | 200 | 155 | 580 | 290 | 193 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-215 | 587 | 200 | 155 | 580 | 290 | 181 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-265 | 593 | 200 | 155 | 630 | 315 | 193 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-215 | 600 | 200 | 155 | 630 | 315 | 203 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-265 | 617 | 200 | 155 | 680 | 340 | 227 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-215 | 636 | 230 | 185 | 680 | 340 | 239 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-265 | 640 | 200 | 155 | 730 | 365 | 250 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL200-265 | 681 | 260 | 215 | 780 | 390 | 290 | 200 | 340 | 23 | 295 | 20 | 306 | 25 | 405 | 175 | 8  |

| Туре       | н   | h1  | h2  | L   | L1  | w   | DN  | D   | d2 | к   | x  | Y   | z  | В   | B1  | As |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|-----|----|
| NSL250-265 | 727 | 260 | 215 | 800 | 400 | 324 | 250 | 405 | 22 | 350 | 20 | 306 | 25 | 405 | 175 | 12 |

#### 4.4.2. NSL-215/265 -12 combination

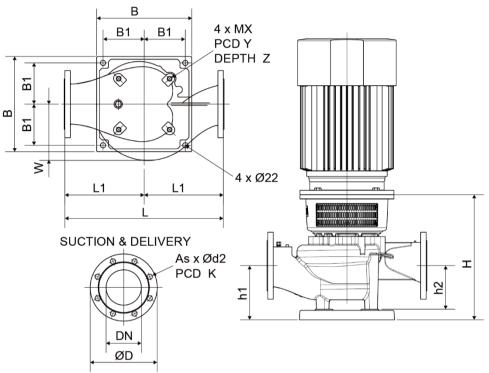



Figure 4-6: Ø215/265-12 combination

| Manometer: 1/4" BSP. Drain: 3/8" | BSP. Priming: 1/2" BSP |
|----------------------------------|------------------------|
|----------------------------------|------------------------|

| Туре       | н   | h1  | h2  | L   | L1  | w   | DN  | D   | d2 | к   | x  | Y   | z  | В   | B1  | As |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|-----|----|
| NSL80-215  | 444 | 200 | 155 | 530 | 265 | 163 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL80-265  | 450 | 200 | 155 | 580 | 290 | 193 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-215 | 465 | 200 | 155 | 580 | 290 | 181 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-265 | 470 | 200 | 155 | 630 | 315 | 193 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-215 | 478 | 200 | 155 | 630 | 315 | 203 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-265 | 493 | 200 | 155 | 680 | 340 | 227 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-215 | 533 | 230 | 185 | 680 | 340 | 239 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-265 | 517 | 200 | 155 | 730 | 365 | 250 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL200-265 | 517 | 260 | 215 | 780 | 390 | 290 | 200 | 340 | 23 | 295 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL250-265 | 604 | 260 | 215 | 800 | 400 | 324 | 250 | 405 | 22 | 350 | 20 | 306 | 25 | 405 | 175 | 12 |

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com

### 4.4.3. NSL-215/265 -13/14 combinations

DESMI

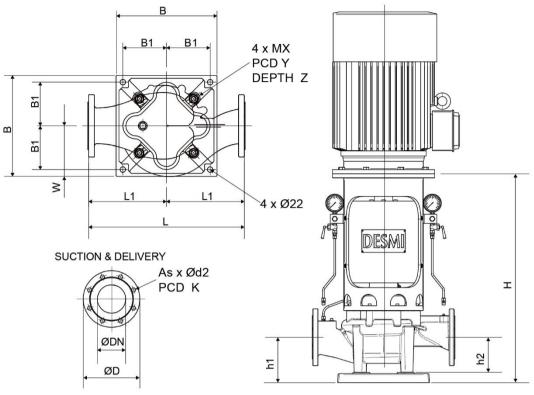



Figure 4-7: Ø215/265-13/14 combinations

#### Manometer:1/4"BSP. Drain:3/8"BSP. Priming:1/2"BSP

| Туре       | Н    | h1  | h2  | L   | L1  | w   | DN  | D   | d2 | к   | х  | Y   | z  | В   | B1  | As |
|------------|------|-----|-----|-----|-----|-----|-----|-----|----|-----|----|-----|----|-----|-----|----|
| NSL80-215  | 868  | 200 | 155 | 530 | 265 | 163 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL80-265  | 900  | 200 | 155 | 580 | 290 | 193 | 80  | 200 | 18 | 160 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-215 | 889  | 200 | 155 | 580 | 290 | 181 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL100-265 | 920  | 200 | 155 | 630 | 315 | 193 | 100 | 220 | 18 | 180 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-215 | 902  | 200 | 155 | 630 | 315 | 203 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL125-265 | 943  | 200 | 155 | 680 | 340 | 227 | 125 | 250 | 18 | 210 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-215 | 938  | 230 | 185 | 680 | 340 | 239 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL150-265 | 967  | 200 | 155 | 730 | 365 | 250 | 150 | 285 | 22 | 240 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL200-265 | 1008 | 260 | 215 | 780 | 390 | 290 | 200 | 340 | 23 | 295 | 20 | 306 | 25 | 405 | 175 | 8  |
| NSL250-265 | 1035 | 260 | 215 | 800 | 400 | 324 | 250 | 405 | 22 | 350 | 20 | 306 | 25 | 405 | 175 | 12 |



#### 4.4.4. NSL-330/415/418/465/525 -02 combination

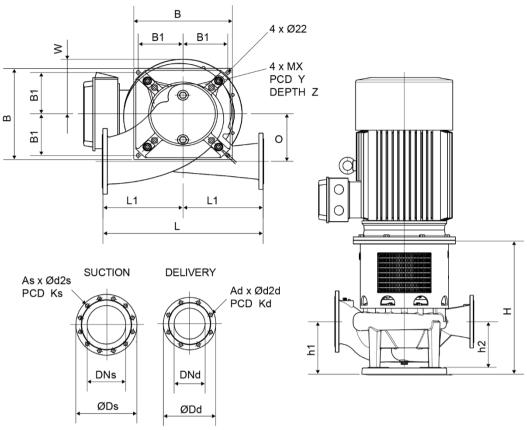



Figure 4-8: Ø330/415/418/465/525-02 combination

Manometer: 1/4" BSP. Drain: 3/4" BSP. Priming: 1/2" BSP

#### Base plate holes: Ø33 instead of Ø22 for NSL350-525

| Туре       | н    | h1  | h2  | L   | L1  | w   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|------|-----|-----|-----|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL80-330  | 738  | 260 | 215 | 600 | 300 | 250 | 235          | 200          | 220          | 200          | 100 | 80  | 180 | 160 |
| NSL100-330 | 743  | 260 | 215 | 650 | 325 | 250 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL100-415 | 761  | 260 | 215 | 700 | 350 | 275 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL125-330 | 788  | 300 | 255 | 700 | 350 | 250 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL125-415 | 799  | 300 | 255 | 750 | 375 | 278 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL150-330 | 799  | 300 | 255 | 750 | 350 | 275 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL150-415 | 845  | 340 | 295 | 800 | 400 | 293 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL200-330 | 842  | 340 | 295 | 900 | 450 | 301 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-415 | 860  | 340 | 295 | 900 | 450 | 308 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-525 | 1050 | 380 | 335 | 900 | 450 | 385 | 425          | 360          | 425          | 360          | 250 | 200 | 350 | 295 |

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com

| Туре       | н    | h1  | h2  | L    | L1  | w   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|------|-----|-----|------|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL250-330 | 889  | 380 | 335 | 1000 | 500 | 327 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL250-415 | 902  | 380 | 335 | 1000 | 500 | 355 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL250-525 | 1060 | 390 | 345 | 1100 | 550 | 390 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL300-415 | 953  | 420 | 375 | 1200 | 600 | 377 | 555          | 485          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-418 | 978  | 410 | 365 | 1300 | 650 | 427 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-465 | 1106 | 410 | 365 | 1200 | 600 | 370 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-525 | 1105 | 435 | 390 | 1200 | 600 | 419 | 555          | 485          | 555          | 485          | 350 | 300 | 460 | 400 |
| NSL350-525 | 1195 | 430 | 390 | 1400 | 700 | 453 | 565          | 505          | 580          | 520          | 400 | 350 | 515 | 460 |

| Туре       | d2s | d2d | As | Ad | x  | Y   | z  | В   | B1  | ο   |
|------------|-----|-----|----|----|----|-----|----|-----|-----|-----|
| NSL80-330  | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 200 |
| NSL100-330 | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 210 |
| NSL100-415 | 18  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 250 |
| NSL125-330 | 22  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 225 |
| NSL125-415 | 22  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL150-330 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 235 |
| NSL150-415 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 275 |
| NSL200-330 | 22  | 22  | 12 | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL200-415 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 285 |
| NSL200-525 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL250-330 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 275 |
| NSL250-415 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 305 |
| NSL250-525 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 340 |
| NSL300-415 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 320 |
| NSL300-418 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 360 |
| NSL300-465 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL300-525 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 365 |
| NSL350-525 | 26  | 22  | 16 | 16 | 24 | 750 | 36 | 900 | 410 | 380 |



#### 4.4.5. NSL-330/415/418/465/525 -12 combination

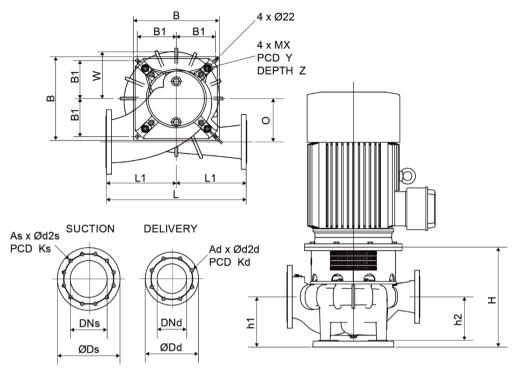



Figure 4-9: Ø330/415/418/465/525-12 combination

Manometer:1/4"BSP. Drain:3/4"BSP. Priming:1/2"BSP

| Туре       | н   | h1  | h2  | L    | L1  | w   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|-----|-----|-----|------|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL80-330  | 499 | 260 | 215 | 600  | 300 | 250 | 235          | 200          | 220          | 200          | 100 | 80  | 180 | 160 |
| NSL100-330 | 504 | 260 | 215 | 650  | 325 | 250 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL100-415 | 547 | 260 | 215 | 700  | 350 | 275 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL125-330 | 549 | 300 | 255 | 700  | 350 | 250 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL125-415 | 585 | 300 | 255 | 750  | 375 | 278 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL150-330 | 599 | 300 | 255 | 750  | 350 | 259 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL150-415 | 631 | 340 | 295 | 800  | 400 | 293 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL200-330 | 643 | 340 | 295 | 900  | 450 | 280 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-415 | 676 | 340 | 295 | 900  | 450 | 308 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-525 | 805 | 380 | 335 | 900  | 450 | 385 | 425          | 360          | 425          | 360          | 250 | 200 | 350 | 295 |
| NSL250-330 | 690 | 380 | 335 | 1000 | 500 | 303 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL250-415 | 718 | 380 | 335 | 1000 | 500 | 330 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |

Base plate holes: Ø33 instead of Ø22 for NSL350-525

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com

# DESMI

## TECHNICAL SPECIFICATION

| Туре       | н   | h1  | h2  | L    | L1  | W   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|-----|-----|-----|------|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL250-525 | 815 | 390 | 345 | 1100 | 550 | 390 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL300-415 | 764 | 420 | 375 | 1200 | 600 | 344 | 555          | 485          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-418 | 834 | 410 | 365 | 1300 | 650 | 427 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-465 | 865 | 410 | 365 | 1200 | 600 | 370 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-525 | 860 | 435 | 390 | 1200 | 600 | 419 | 555          | 485          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL350-525 | 950 | 430 | 390 | 1400 | 700 | 453 | 565          | 505          | 580          | 520          | 400 | 350 | 515 | 460 |

| Туре       | d2s | d2d | As | Ad | х  | Y   | z  | в   | B1  | ο   |
|------------|-----|-----|----|----|----|-----|----|-----|-----|-----|
| NSL80-330  | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 200 |
| NSL100-330 | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 210 |
| NSL100-415 | 18  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 250 |
| NSL125-330 | 22  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 225 |
| NSL125-415 | 22  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL150-330 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 235 |
| NSL150-415 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 275 |
| NSL200-330 | 22  | 22  | 12 | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL200-415 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 285 |
| NSL200-525 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL250-330 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 275 |
| NSL250-415 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 305 |
| NSL250-525 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 340 |
| NSL300-415 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 320 |
| NSL300-418 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 360 |
| NSL300-465 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL300-525 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 365 |
| NSL350-525 | 26  | 22  | 16 | 16 | 24 | 750 | 36 | 900 | 410 | 380 |

## 4.4.6. NSL-330/415/418/465/525 -13/14 combinations

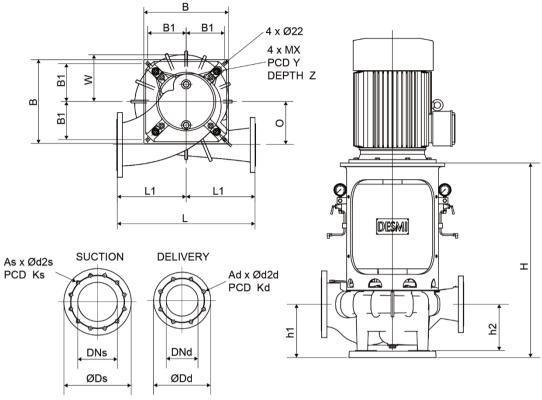



Figure 4-10: Ø330/415/418/465/525-13/14 combinations

## Manometer:1/4"BSP. Drain:3/4"BSP. Priming:1/2"BSP

Base plate holes:Ø33 instead of Ø22 for NSL350-525.

| Туре       | Н    | h1  | h2  | L    | L1  | w   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|------|-----|-----|------|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL80-330  | 1079 | 260 | 215 | 600  | 300 | 250 | 235          | 200          | 220          | 200          | 100 | 80  | 180 | 160 |
| NSL100-330 | 1084 | 260 | 215 | 650  | 325 | 250 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL100-415 | 1107 | 260 | 215 | 700  | 350 | 275 | 270          | 235          | 250          | 220          | 125 | 100 | 210 | 180 |
| NSL125-330 | 1130 | 300 | 255 | 700  | 350 | 250 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL125-415 | 1145 | 300 | 255 | 750  | 375 | 278 | 300          | 270          | 285          | 250          | 150 | 125 | 240 | 210 |
| NSL150-330 | 1140 | 300 | 255 | 750  | 350 | 275 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL150-415 | 1191 | 340 | 295 | 800  | 400 | 293 | 360          | 300          | 340          | 285          | 200 | 150 | 295 | 240 |
| NSL200-330 | 1183 | 340 | 295 | 900  | 450 | 301 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-415 | 1241 | 340 | 295 | 900  | 450 | 308 | 425          | 360          | 395          | 340          | 250 | 200 | 350 | 295 |
| NSL200-525 | 1515 | 380 | 335 | 900  | 450 | 395 | 425          | 360          | 425          | 360          | 250 | 200 | 350 | 295 |
| NSL250-330 | 1230 | 380 | 335 | 1000 | 500 | 327 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL250-415 | 1283 | 380 | 335 | 1000 | 500 | 355 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |

# DESMI

| Туре       | н    | h1  | h2  | L    | L1  | w   | Ds<br>A-exe. | Dd<br>A-exe. | Ds<br>D-exe. | Dd<br>D-exe. | DNs | DNd | ks  | kd  |
|------------|------|-----|-----|------|-----|-----|--------------|--------------|--------------|--------------|-----|-----|-----|-----|
| NSL250-525 | 1525 | 390 | 345 | 1100 | 550 | 390 | 485          | 425          | 445          | 395          | 300 | 250 | 400 | 350 |
| NSL300-415 | 1329 | 420 | 375 | 1200 | 600 | 377 | 555          | 485          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-418 | 1359 | 410 | 365 | 1300 | 650 | 427 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-465 | 1570 | 410 | 365 | 1200 | 600 | 370 | 505          | 445          | 505          | 445          | 350 | 300 | 460 | 400 |
| NSL300-525 | 1570 | 435 | 390 | 1200 | 600 | 419 | 555          | 485          | 555          | 485          | 350 | 300 | 460 | 400 |
| NSL350-525 | 1660 | 430 | 390 | 1400 | 700 | 453 | 565          | 505          | 580          | 520          | 400 | 350 | 515 | 460 |

| Туре       | d2s | d2d | As | Ad | x  | Y   | z  | в   | B1  | ο   |
|------------|-----|-----|----|----|----|-----|----|-----|-----|-----|
| NSL80-330  | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 200 |
| NSL100-330 | 18  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 210 |
| NSL100-415 | 18  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 250 |
| NSL125-330 | 22  | 18  | 8  | 8  | 20 | 306 | 25 | 405 | 175 | 225 |
| NSL125-415 | 22  | 18  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL150-330 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 235 |
| NSL150-415 | 22  | 22  | 8  | 8  | 20 | 450 | 25 | 550 | 250 | 275 |
| NSL200-330 | 22  | 22  | 12 | 8  | 20 | 450 | 25 | 550 | 250 | 260 |
| NSL200-415 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 285 |
| NSL200-525 | 22  | 22  | 12 | 8  | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL250-330 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 275 |
| NSL250-415 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 305 |
| NSL250-525 | 22  | 22  | 12 | 12 | 24 | 560 | 28 | 550 | 250 | 340 |
| NSL300-415 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 320 |
| NSL300-418 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 360 |
| NSL300-465 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 330 |
| NSL300-525 | 22  | 22  | 16 | 12 | 24 | 560 | 28 | 550 | 250 | 365 |
| NSL350-525 | 26  | 22  | 16 | 16 | 24 | 750 | 36 | 900 | 410 | 380 |

## 4.5. Pump weight

The weights of the pumps in cast iron (A-GG20/EN-GJL-200&GGG40/EN-GJS-400-15) and bronze (D-Rg5/CC491K) combination (without motor, include base plate) are stated in the following table, The D-12 combination is only available in ø330/415/418/525. Pump in NiAlBz/CC333G and stainless steel (without motor) are equivalent to pumps in A code.

| Pump       | A02/A12/D02/<br>D12 comb.[KG] | Pump       | A02/A12/D02/D12<br>comb.[KG] |
|------------|-------------------------------|------------|------------------------------|
| NSL80-215  | 126/141/100/                  | NSL150-415 | 454/474/404/424              |
| NSL80-265  | 135/152/109/                  | NSL200-265 | 207/240/181/                 |
| NSL80-330  | 256/261/206/211               | NSL200-330 | 409/394/359/344              |
| NSL100-215 | 137/154/111/                  | NSL200-415 | 529/549/479/499              |
| NSL100-265 | 136/153/120/                  | NSL200-525 | 699/789/629/719              |
| NSL100-330 | 261/267/211/217               | NSL250-265 | 301/341/296/                 |
| NSL100-415 | 379/399/329/349               | NSL250-330 | 489/479/439/429              |
| NSL125-215 | 148/163/122/                  | NSL250-415 | 609/614/559/564              |
| NSL125-265 | 154/175/128/                  | NSL250-525 | 809/924/739/854              |
| NSL125-330 | 276/282/226/232               | NSL300-415 | 729/729/679/679              |
| NSL125-415 | 414/434/364/384               | NSL300-418 | 927/735/807/685              |
| NSL150-215 | 167/191/141/                  | NSL300-465 | 1145/1065/825/745            |
| NSL150-265 | 172/197/146/                  | NSL300-525 | 870/1005/800/935             |
| NSL150-330 | 339/329/289/279               | NSL350-525 | 1408/1285/1270/1230          |

## NSL /-02/12 combinations

## 

| Pump       | A13/14/D13/14 comb. [KG] | Pump       | A13/14/D13/14 comb. [KG] |
|------------|--------------------------|------------|--------------------------|
| NSL80-215  | 186/186/201/201          | NSL150-415 | /479//499                |
| NSL80-265  | 195/195/212/212          | NSL200-265 | /267//300                |
| NSL80-330  | 301/ 301/306/306         | NSL200-330 | /459//444                |
| NSL100-215 | 197/197/214/214          | NSL200-415 | /579//599                |
| NSL100-265 | 196/196/213/213          | NSL200-525 | /829//919                |
| NSL100-330 | 311/311/317/317          | NSL250-265 | /346//386                |
| NSL100-415 | 404/404/424/424          | NSL250-330 | /539//529                |
| NSL125-215 | 208/208/223/223          | NSL250-415 | /659//664                |
| NSL125-265 | 214/214/235/235          | NSL250-525 | /939//1054               |
| NSL125-330 | 326/326/332/332          | NSL300-415 | /759//759                |
| NSL125-415 | 439/439/459/459          | NSL300-418 | /1022//895               |
| NSL150-215 | /227//251                | NSL300-465 | /1370//1050              |
| NSL150-265 | 232/232/257/257          | NSL300-525 | /1000//1135              |
| NSL150-330 | /389 //379               | NSL350-525 | /1608//1570              |



## **5. INSTALLATION**

## 5.1. Mounting / Fastening



## **A** DANGER

## **TEMPERATURE HAZARD!**

When you install the pump that is used for pumping hot or very cold liquids, touching the pump surface might cause serious injury.

Always wear approved personal protective equipment.

The pump shall be mounted and fastened on a solid foundation with a flat and horizontal surface to avoid distortion. In case gaps bigger than 0.3 mm appear between any NSL pump base plate corner and foundation then insert shim(s) (at least 50x50 mm) between pump base plate corner and foundation before tightening the four bolts in the pump base plate corners.

The max. permissible loads on the flanges stated in *chapter 4.1* are to be observed.

## 5.2. Wiring

#### **⚠** WARNING



Incorrect wiring could cause death or serious injury.

Wiring work requires professional knowledge. Only authorised skilled person can do the work.

Always obey the valid rules and regulations.

SPECIAL SKILLS REQUIRED!

For final design and installation of pumps supplied by DESMI, use DS information DS/CEN/TR 13930 (recommendations for installing pipe systems) and 13932 (recommendations for installing pumps) as guidelines.

Key elements of pump installation:

- Foundation
- Pipe system
- Pipe support
- Ventilation for installation

# DESMI

- Service areas and lifting points for motor and pump
- Pipe medium flow
- Optimum operating range
- Electrical connections (cables and screw assemblies)
- Electrical interference
- Using Common Mode filter for minimizing bearing currents when installing frequency convert

## Pipe system before pump - suction line

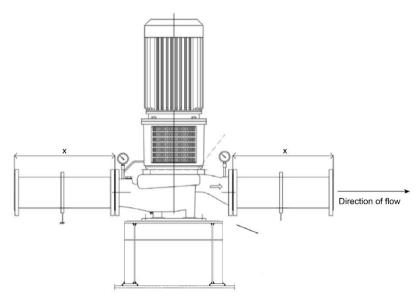
DS13930/13932 recommends length of suction pipe "X" before the pump is around 3 to 5 x pipe diameter. For a DN100 pump, this will be equivalent to X=300 to 500mm. This rule of thumb ensures laminar flow before and after the pump that will give optimum operating conditions. But in practice, there are many installations where this is not obtained.

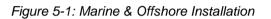
X= minimum length of suction pipe before flow-changing components.

Flow-changing components:

- Compensators
- Valves
- Filters
- Bends
- Orifice plate
- Etc.

Ensure a solid base plate to minimise vibrations and extend service intervals.


Avoid 90-degree bends, T-pieces or other components that can impede flow on the pump suction side.


Avoid radius of curvature of less than 1.5 times the nominal pipe diameter.

Avoid abrupt changes of cross-section along the piping system.

Gentle curves or Y-pieces to ensure optimum flow before (and after) the pump are best.

Use shims between pump base plate and foundation to avoid tension in the pump foot when the installation is secured.





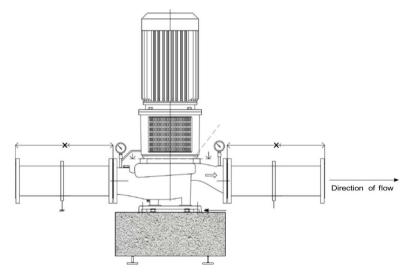
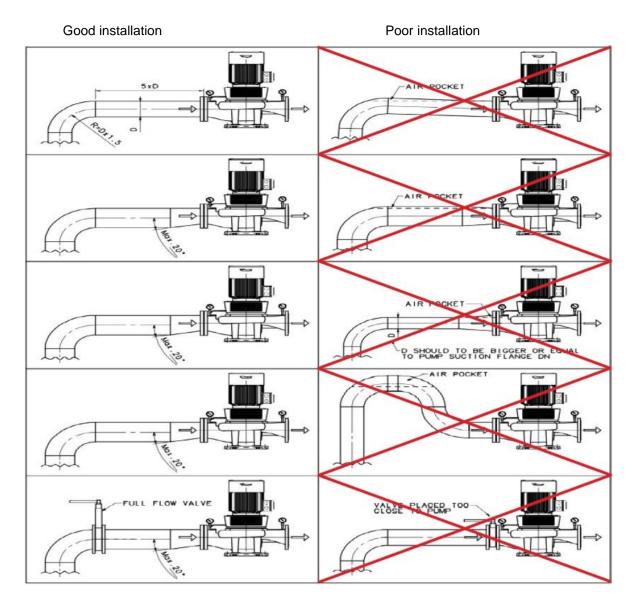




Figure 5-2: Land Base Installation

Pump installation foundation should be in good condition and shape.

- All the edges of pump foot have full contact with the supporting brackets.
- Pipes shall be connected correctly and not overloading the pump flanges. Refer to *chapter 4.1* regarding max. permissible loads on the pump flanges.
- Pipe support shall be designed according to the pipe forces at every possible operating condition, including cold/warm, empty/full, unpressurized/pressurized.
- All bolts on base plate / base frame shall be tightened with recommended torques.
- For Marine & Offshore installation, foundation should be made from proper steel plate or profile steel with enough stiffness to support pump to run stably and reduce potential vibrations.

## DESMI Recommended design of pipes



## Recommended flow velocity in pipeline

Flow velocity (v) in following ranges

Note: Higher velocities might be acceptable in some installations and/or for short term operation.

- v < 3 m/s at inlet side (note: v<1.5 m/s in manifolds splitting flow to several pumps in parallel)
- v < 6 m/s at outlet side

## **Avoid impurities**

Recommend installing filter and monitor device to avoid impurities into pump.

- Install a filter into the suction pipe.
- Install a differential pressure gauge to monitor impurity.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com

## **Bypass**

The pump must not run against a closed valve as this will cause a rise in temperature / formation of steam in the pump which may cause damage to the pump.

If there is any special design of the pump running against a closed valve, ensure a minimum liquid flow through the pump by connection of a bypass or drain to the outlet pipe. The minimum flow rate must be at least 30% of maximum flow rate for short term operation, the flow rate and head are stated on the pump name plate. **Note:** Operation outside 70 to 120 % of BEP flow reduce the pump life (incl. shaft seal and pump bearings) significantly.

## Allowable vibration levels on the pumps

As standard, DESMI centrifugal pumps with electric motor generate less than 2.8 mm/s vibration velocity (measured in 3 directions at motor flange level on vertical pumps) during a factory test. The pump and electric motor industry generally agrees that vibration levels above 7 mm/s are damaging – i.e. this will result in shorter lifetimes of e.g. bearings and/or shaft seals in pumps (and bearings in motors) than normally expected. This agrees with the recommendations in the international standard ISO10816-3.

## Vibration prevention on vertical Pumps installed on ships.

High vibration levels at pump / motor top is a well-known issue in vertical pumps installed on ships.

Often external excited vibrations combined with the relative high Centre of Gravity compared with the size of the pump baseplate and/or the foundation stiffness below result in too high vibration levels in pump and motor top.

I.e. it is normally not the vibrations induced by the motor and/or the pump itself that causes problems (except if the pump or motor has mechanical problems and/or the pump is running with much higher flow than it is designed for – this can cause so high turbulence levels in pump and piping system that excessive vibrations occur).

Changing the structure can minimize the vibration level significantly - either by reinforcing the foundation stiffness below the base plate of the pump and/or by adding lateral supports at pump top / motor mounting flange level (the lateral supports will typically be the cheapest/fastest/easiest solution).

Whether this should be a rigid or a flexible support is not easy to determine since this depends on the actual installation and the available fixing points in the vessel.

In cases where the lateral supports are transferring hull vibrations (e.g. from main engine in ship) to the support connection points on pump or motor then a flexible element can then be added for



protection of the pump and motor unit.

If the motor weighs more than say two times the pump (often the case for e.g. small vertical DESMI NSL pumps with 2-pole motor running say 2980 or 3570 rpm) it is normally better to mount the lateral supports at the motor's lifting eye bolt holes (i.e. near the center of gravity for the motor).

Examples of DESMI vertical pumps with lateral supports bolted onto motor mounting flange (i.e. reusing existing bolt holes) are shown as below:

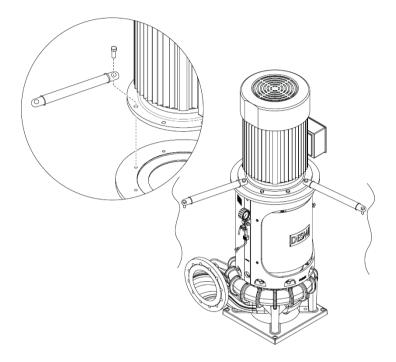



Figure 5-3: Examples of DESMI vertical pumps with lateral supports

DESMI recommends the following values for protective settings:

| Location              | Vibration alarm level (mm/s) | Vibration trip level(mm/s) |
|-----------------------|------------------------------|----------------------------|
| Pump                  | >7                           | >10                        |
| Motor (drive end)     | >7                           | >10                        |
| Motor (non drive end) | >10                          | >15                        |

## Maximum suction up height (suction lift)

If the pump inlet pressure is lower than the vapor pressure of the pumped liquid, cavitation will occur. To avoid cavitation, a minimum pressure at the side of pump must be guaranteed.

The maximum suction up height should be lower than the following calculated value. If not, the pump will not work normally and might be damaged due to cavitation and/or deliver less flow and/or less differential pressure.

H = Hb - NPSHr - Hf - Hv - Hs

Here:

Hb = Barometric liquid head (m) = Pb×10.2/SG (m)

Pb = Atmospheric pressure (bar) (can normally be set as 1 bar – but might be significantly less).

SG=Specific Gravity (e.g. set as 1 for fresh water, 1.025 for seawater, 0.84 for diesel fuel)

In a closed system, Pb means system pressure (bar).

NPSHr = Net positive suction head required (m) (read at actual flow on NPSHr curve for pump)

Hf = Pipeline loss at the inlet (m)

Hv = Vapor pressure for actual liquid (m)

Hs = Safety margin, at least 0.5 meter recommended

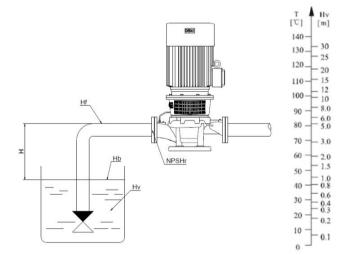



Figure 5-4: Suction up height

## **DESMI** Service areas

To facilitate future servicing of pump and electric motor, lifting gear, such as access for cranes, lifting points, ceiling beams or other approved equipment for the purpose, should be installed. Carefully consider where the pump installation will be placed, as transportable approved lifting gear often needs considerable space.

\* If there is no permanently-installed lifting gear, an approved lifting beam is required.

\*Note: Some pumps have a service area underneath.

## Insulation

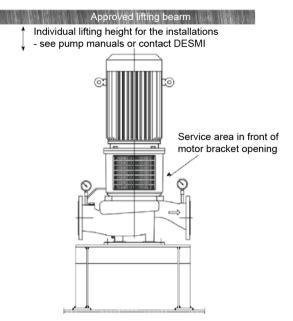



Figure 5-5: Service areas

Pumps supplied by DESMI can in general be insulated for heat or cold except at the top of the pump housing

 i.e. up to the base flange on the motor bracket as shown below. No holes or screen openings on the motor bracket can be covered by insulation.

An electric motor will become hotter if mounted on a fully insulated pump. The ball bearings and/or windings coils in the motor can overheat if a pump is insulated all the way up to the motor flange.

Unrestricted ventilation of the motor bracket is therefore necessary to provide sufficient cooling of pump and motor bearings – both in pumps with bearings (/-02 or Spacer version) and without bearings (/-12 version).

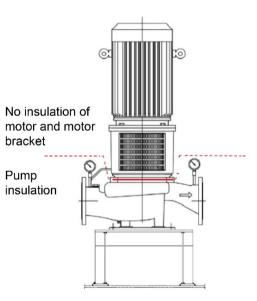



Figure 5-6: Insulation



## Ventilation

Ambient conditions-

Pay attention to the correct arrangement of air feed and discharge lines so that:

- The pump is efficiently ventilated.
- The room temperature not exceeding 45 °C.
- Ensure airflow around the pump motor.

The rating of the electrical apparatus is critical in this respect.

Operation under other ambient conditions to be agreed with the manufacturer.

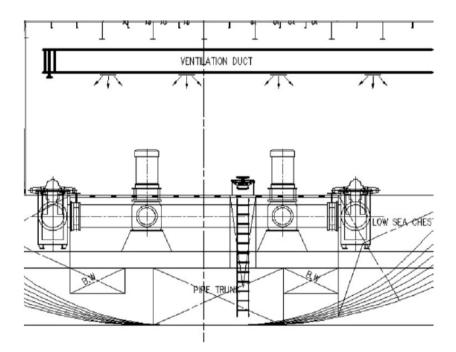



Figure 5-7: Ventilation



**NOTE**: If the admissible temperature are exceeded, additional measures must be taken. Maintenance intervals and maintenance measures may have to be adjusted accordingly.

# DESMI

## 6. COMMISSIONING, START-UP AND SHUTDOWN

## 6.1. Prerequisites for commissioning / start-up

Before commissioning / starting up the pump set, make sure that the following conditions are met:

- The pump set is properly connected to the power supply and is equipped with all protection devices.
- The pump is primed with the fluid to be handled. The pump is vented.
- The direction of rotation is checked.
- All auxiliary connections required are connected and operational.
- If re-greasable then motor bearings to be greased acc. to motor manual before starting the pump ! Any pump bearing(s) are fully greased from DESMI factory = do not re-grease any pump bearing(s) before scheduled running hours in re-grease table in Section 8 are obtained).
- After prolonged shutdown of the pump (set), the activities required for returning the pump (set) to service are carried out.

## 6.2. Priming and venting the pump

**EXPLOSION HAZARD!** 



## 

Incorrect start-up of the pump will cause potentially explosion atmosphere inside the pump, which will cause death or serious injury.

Before starting up the pump, vent the suction line and the pump, and prime them with the fluid to be handled.

## CAUTION



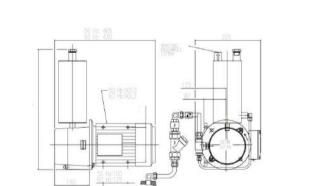
## **RISK OF PROPERTY DAMAGE!**

Dry running will cause increased wear to the pump.

Do not operate the pump set without liquid fill.

Do not close the shut-off element in the suction line and / or supply line during pump operation.




**NOTE:** For design-inherent reasons, some unfilled volume in the hydraulic system cannot be excluded after the pump is primed for commissioning/start-up. However, once the motor is started up the pumping effect will immediately fill this volume with the fluid handled.

- 1. Vent the pump and the suction line and prime both with the fluid to be handled.
- 2. Fully open the shut-off element in the suction line.
- 3. Fully open all auxiliary feed lines (barrier fluid, flushing liquid, etc.), if any.
- 4. Open the shut-off element, if any, in the vacuum balance line, and close the vacuum-tight shutoff element, if any.

#### Venting and priming

Automatic venting and priming system is designed for centrifugal pumps to prevent dry running while the liquid level is below the pump inlet.

When the centrifugal pump is turned on, only the automatic priming system will be activated. After the time limit relay sequence is completed, the centrifugal pump is also activated. As soon as the centrifugal pump builds up the necessary discharge pressure, the priming system is switched off via the pressure switch.



DESMI priming unit has two types:priming pump and priming air ejector.

Figure 6-1: Priming pump B114N

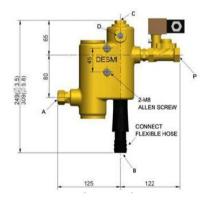



Figure 6-2: Priming air ejector

Please see manual for more details.

http://www.desmi.com/media/fo2dilig/t1488uk.pdf http://www.desmi.com/media/dtojxa0h/t1521uk.pdf DESMI



## 

## EXPLOSION HAZARD!

## LEAKAGE OF HOT OR TOXIC FLUIDS!

If the pump is operated with the suction and/or discharge line closed will cause incorrect pressure and temperature. Hot or hazard fluids under pressure will cause death or serious injury.

Do not operate the pump with the shut-off elements in the suction line and/or discharge line closed.

Only start up the pump set with the discharge-side shut-off element slightly or fully open.

#### 



## DAMAGE TO THE PUMP SET!

cause death or serious injury.

**EXPLOSION HAZARD!** 

## High temperature due to dry running or too much gas content in the fluid handled will

**(Ex**)

Do not operate the pump set without liquid fill.

Prime the pump according to operating instructions.

Always operate the pump in the permissible operating range.

## CAUTION



#### **RISK OF PROPERTY DAMAGE!**

Abnormal noises, vibrations, temperatures or leakage could cause damage to the pump.

Stop the pump (set) immediately.

Eliminate the causes before returning the pump set to service.



#### NOTE:

A centrifugal pump will not function until it is filled with liquid between the foot valve and somewhat above the impeller of the pump.

The liquid also serves as coolant for the shaft seal. In order to protect the shaft seal, the pump must not run dry.

For safety reasons the pump is only allowed to operate against closed discharge valve for a short time (max. 5 minutes and at a max. temperature of 80 °C for standard pumps). Otherwise there is

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tif. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



a risk of damage to the pump and, at worst, of a steam explosion. If the pump is not monitored, the installation of a safety device is recommended.

Check in the electric motor manual if the bearings in the motor needs be lubricated with grease before first start-up.

On pumps not running, the shaft shall be rotated at least 2-3 times monthly to avoid standstill damage to shaft seal and bearings. If the pump is filled with liquid, it can alternatively be started up shortly.

In special applications, it may require more frequent shaft rotation or start-up in order to avoid seizing of the impeller and/or the shaft seal.

In pressurized systems, the shaft seal often leaks a bit during standstill – in most cases the leakage stops shortly after the pump is started up.

It is not recommended to lead liquid (either one way or the other) through a passively rotating pump, as this may damage the shaft seal.

For the sake of the shaft seal lifetime, it is recommended to run at least 300 rpm and use max. 1 minute on acceleration from 0 to 300 rpm and max. 1 minute on deceleration from 300 to 0 rpm.

## 6.3.1. Start-up procedure

Before starting the pump check that:

- The shaft rotates freely without jarring sounds.
- The pump casing and the suction line are filled with liquid.

Start the pump for a moment to check the direction of rotation. If the direction is correct (i.e. in the direction of the arrow) the pump may be started.

- The system piping is cleaned.
- The pump, suction line and inlet tank, if any, are vented and primed with the fluid to be pumped.
- The lines for priming and venting are closed.



## CAUTION

## **RISK OF PROPERTY DAMAGE!**



Start-up against open discharge line could lead to motor overload, which could damage the motor.

Make sure that the motor has sufficient power reserves.

Use a soft starter.

Use speed control.

- 1. Fully open the shut-off element in the suction head / suction lift line.
- 2. Close or slightly open the shut-off element in the discharge line.
- 3. Start up the motor.
- 4. Immediately after the pump reaches the full rotational speed, slowly open the shut-off element in the discharge line and adjust it to comply with the duty point.

## 6.4. Checking the shaft seal

The mechanical seal only leaks slightly or invisibly (as vapor) during operation. Mechanical seals are maintenance-free.

## 6.5. Shut down

## CAUTION



RISK OF DAMAGING THE SHAFT SEAL!

Heat build-up inside the pump could damage the shaft seal.

Stop the heat source, and always allow the fluid handled to completely cool down after the pump set stops.

The shut-off element in the suction line is and remains open.

- 1. Close the shut-off element in the discharge line.
- 2. Switch off the motor and make sure the pump set runs down smoothly to a standstill.



**NOTE:** If the discharge line is equipped with a check valve, the shut-off element in the discharge line may remain open, provided the site's requirements and regulations are taken into account and observed.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tif. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



For prolonged shut down periods:

- 1. Close the shut-off element in the suction line.
- 2. Close the auxiliary connections.

#### CAUTION



## **RISK OF PROPERTY DAMAGE!**

**EXPLOSION HAZARD!** 

Liquids may freeze during long-term shutdown periods, which could damage the pump.

Drain the pump and the cooling / heating chambers (if any), or take other actions to prevent them from freezing.

## 6.6. Operating limits

The working range in *chapter 4.1* and technical data in *chapter 4.2* to be complyed with.

#### 



## LEAKAGE OF HOT OR TOXIC FLUID HANDLED!

When you operate the pump, incorrect pressure, temperature, fluid handled and speed will cause damage to property, death or serious injury.



Observe the operating data in the order documentation.

Do not use the pump to handle unauthorized fluids.

**RISK OF PROPERTY DAMAGE!** 

Do not operate the pump against a closed shut-off element for long periods

Without getting written approval from DESMI, do not operate the pump in incorrect condition (for example, temperature, pressures or speeds exceeding those specified in the order documentation or on the name plate).

#### CAUTION



(set).

When you operate the pump, incorrect ambient temperature could damage the pump

Observe the specified limits for permitted ambient temperatures.

## **DESMI** 6.7. Frequency of starts

## 



## **EXPLOSION HAZARD!**

## DAMAGE TO THE MOTOR!



Too high temperature of the motor surface may cause explosion, which will cause damage to the motor, death or serious injury.

For explosion-proof motors, observe the frequency of starts in manufacturer's documents.

The frequency of starts is usually determined by the maximum temperature increase of the motor. This largely depends on the power reserves of the motor in steady state operation and on the starting conditions (DOL, star-delta, moments of inertia, etc.). If the start-ups are evenly spaced over the period indicated, the following limits serve as orientation for start-up with the dischargeside gate valve slightly open:

| Impeller material               | Maximum number of start-ups [Start-ups/hour] |  |  |  |  |
|---------------------------------|----------------------------------------------|--|--|--|--|
|                                 |                                              |  |  |  |  |
| Bronze (NiAlBz/CC333G)          | 6                                            |  |  |  |  |
| Stainless steel (1.4410/1.4436) | 6                                            |  |  |  |  |

CAUTION



## **RISK OF PROPERTY DAMAGE!**

Re-starting while motor is still running could damage the pump (set).

Do not re-start the pump set before the pump motor is fully stopped.

## 6.8. Fluid handled

## 6.8.1. Flow rate

Recommend operate pump at 70 to 120% of BEP flow for hihg efficiency, operation outside the range reduce the pump life (incl. shaft seal and pump bearings) significantly.



The pump input power changes in proportion to the density of the fluid handled.

#### CAUTION



## **RISK OF PROPERTY DAMAGE!**

Too high density of the fluid pumped could lead to motor overload, which could damage the motor.

Observe the density information in the order documentation.

Make sure that the motor has sufficient power reserves.

## 6.8.3. Abrasive fluids

Do not exceed the maximum permissible solids content specified in the order documentation. When the pump handles fluids containing abrasive substances, increased wear of the hydraulic system and the shaft seal are to be expected. In this case, reduce the commonly recommended inspection intervals.

## 6.9. Decommissioning / out of service

When the pump is decommissioned or put out of service for a longer period of time, it has to be stored properly.

## The pump (set) remains installed

Sufficient fluid is supplied for the operation check run of the pump.

1. Start up the pump (set) regularly between once a month and once every three months for approximately five minutes during prolonged shutdown periods. This will prevent the formation of deposits within the pump and the pump intake area.

## The pump (set) is removed from the pipe and stored

The pump was properly drained and the safety instructions for dismantling the pump was observed.

- 1. Spray-coat the inside wall of the pumpcasing, and in particular the impeller clearance areas, with a preservative.
- 2. Spray the preservative through the suction and discharge nozzles. It is recommended to close the pump nozzles (e.g. with plastic caps or similar).

DFSM



 Apply oil or grease (silicone-free oil and grease, food-approved if required) on all exposed machined parts and surfaces of the pump (with silicone-free oil and grease, food-approved if required) to protect them against corrosion.

Observe the additional instructions.

If the pump set is to be stored temporarily, only preserve the wetted components made of low-alloy materials. Commercially available preservatives can be used for this purpose. Observe the manufacturer's instructions for application / removal.

Observe any additional instructions and information provided.

## 6.10. Return to service

For returning the pump to service, observe the sections on commissioning / start-up and the operating limits. In addition, Do all servicing / maintenance operations before returning the pump (set) to service.

## **AWARNING**



## PERSONAL INJURY HAZARD!

Moving parts or excaping fluid could cause death or serious injury.

Immediately after the work is complete, re-install and/or re-activate all safety-relevant and protective devices.



NOTE: If the pump has been out of service for more than one year, replace all elastomer seals.

## 7. TROUBLESHOOTING

It is often difficult to calculate a manometric delivery head in advance. It is, however, decisively important to the quantity of liquid delivered.

A considerably smaller delivery head than expected will increase the quantity of liquid delivered, causing increased power consumption and perhaps cavitation in pump and piping. In the pump, the impeller may show signs of heavy erosion caused by cavitation (corrosion) which may at times render an impeller unfit for use in a very short time. Similar erosions also occur in pipe bends and valves elsewhere in the piping system.

Therefore, after start-up, it is necessary to check either the quantity of liquid delivered or the power consumption of the pump e.g. by measuring the current intensity of the connected motor. Together with a reading of the differential pressure, the quantity of water delivered can be determined against the characteristics of the pump.

If the pump does not function as intended, please proceed according to the fault-finding list. Bear in mind, though, that the pump was carefully checked and tested at the factory and that the majority of faults stem from the piping system.

| FAULT                        | CAUSE                                                              | REMEDY                                                                                                  |  |  |
|------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
|                              | 1. Wrong direction of rotation                                     | Change direction of rotation to<br>clockwise when viewed from shaft<br>end (the direction of the arrow) |  |  |
|                              | 2. Piping system is choked                                         | Clean or replace the piping system                                                                      |  |  |
| The pump has no or           | 3. The pump is choked                                              | Clean the pump                                                                                          |  |  |
| too low capacity             | 4. Suction line leaks                                              | Find the leakage, repair the fault,                                                                     |  |  |
|                              | 5. Pump takes air                                                  | non-return valve not submerged                                                                          |  |  |
|                              | 6. Suction lift is too high                                        | Check data sheet Q/H curve and NPSH or contact DESMI                                                    |  |  |
|                              | <ol> <li>Pump and piping system<br/>wrongly dimensioned</li> </ol> | As 5                                                                                                    |  |  |
|                              | 1. Counter-pressure is too low                                     | Insert orifice plate or check valve<br>/ Contact DESMI                                                  |  |  |
| The pump uses too much power | <ol> <li>The liquid is heavier than<br/>water</li> </ol>           | Contact DESMI                                                                                           |  |  |
|                              | 3. Foreign body in pump                                            | Dismantle the pump, remove the cause                                                                    |  |  |



| FAULT                | CAUSE                                                         | REMEDY                                                                                             |
|----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                      | <ol> <li>Electric motor is running on<br/>2 phases</li> </ol> | Check fuses, cable connections, and cables                                                         |
| The pump makes noise | 1. Cavitation in pump                                         | Suction lift is too high / Suction<br>line wrongly dimensioned / Liquid<br>temperature is too high |

## 7.1. Mechanical seal failure analysis

| Description of poosible failure                                 | Impacts on the pump/system                              | Indications of failure                                                    | How to avoid                                                                                                                           |
|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Pump settled (due to seizing sliding rings                      | Mechanical seal failure/leaking after                   | 1. Initial leaking<br>after first start up                                | 1. Ensure correct storage of pumps                                                                                                     |
| in mechanical shaft<br>seal) due to standstill<br>after storage | short time                                              | that does not<br>stop after short<br>time                                 | 2. Preventive<br>maintenance to<br>be followed for<br>long term<br>storage                                                             |
|                                                                 |                                                         |                                                                           | <ol> <li>Rotate pump<br/>carefully by hand<br/>prior to first start<br/>up, to ensure<br/>integrity of mech.<br/>shaft seal</li> </ol> |
| Pump settled (due to seizing sliding rings in mechanical shaft  | Medium could<br>change properties<br>when standstill in | <ol> <li>Higher power<br/>consumption<br/>than calculated</li> </ol>      | <ol> <li>Rotate the pump<br/>regularly, to<br/>avoid seizing</li> </ol>                                                                |
| seal) due to standstill<br>in system / stored                   | pump based on the<br>environment and                    | short time after startup                                                  | <ol> <li>If not possible,<br/>pumps should be</li> </ol>                                                                               |
| with water inside for<br>longer duration of<br>time             | type of medium                                          | <ol> <li>Leakage from<br/>mech. shaft seal<br/>after start up</li> </ol>  | drained                                                                                                                                |
| Lack of NPSH<br>available vs. NPSH<br>required                  | Cavitation duty, creating vibration and mechanical      | <ol> <li>Vibration and<br/>noise from the<br/>pump</li> </ol>             | <ol> <li>Make sure to<br/>have sufficient<br/>NPSHa at all</li> </ol>                                                                  |
|                                                                 | damage                                                  | 2. Wear on<br>impeller/seal<br>ring, and<br>possible leaking<br>mec. seal | times                                                                                                                                  |



| Description of poosible failure                                       | Impacts on the pump/system                                                                                                                                                            | Indications of failure                                                                                                                                                                                    | How to avoid                                                                                                                                                                                                               |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bad piping and fitting arrangement                                    | Turbulent flow and<br>vibrations in the<br>system                                                                                                                                     | <ol> <li>Vibration, and<br/>noises from the<br/>piping system.</li> <li>Possible<br/>premature<br/>leakage from<br/>mec. seal</li> </ol>                                                                  | <ol> <li>Check piping and<br/>fitting<br/>arrangement is in<br/>accordance with<br/>CEN standards.</li> <li>Should be<br/>reviewed and<br/>approved in<br/>design phase</li> </ol>                                         |
| Starvation / lack of inlet flow                                       | Pump not receiving<br>enough liquid to give<br>a stable operation,<br>pump not giving<br>sufficient flow. Could<br>cause insufficient<br>liquid film in seal and<br>cause dry running | <ol> <li>Vibrations in the<br/>pump and<br/>unstable<br/>operational<br/>readings</li> <li>Flow not<br/>increasing at<br/>higher pump<br/>speed.</li> <li>Possible leaking<br/>mechanical seal</li> </ol> | <ol> <li>Make sure all<br/>valves are open,<br/>and no filters are<br/>clogged etc.</li> <li>Check piping and<br/>fittings</li> <li>Other consumers<br/>on the same<br/>suction line might<br/>cause problems</li> </ol>   |
| High liquid velocities                                                | Vibrations and<br>turbulent flow in the<br>system                                                                                                                                     | <ol> <li>Noise, vibrations<br/>and lack of pump<br/>performance.</li> <li>Possible leaking<br/>mech. shaft seal</li> </ol>                                                                                | <ol> <li>Make sure to<br/>have piping<br/>dimensioned for<br/>specified flow<br/>rating</li> <li>In general liquid<br/>velocity should<br/>increase from<br/>piping inlet<br/>trough the pump<br/>to the outlet</li> </ol> |
| External excited<br>vibrations from the<br>vessel or piping<br>system | If above<br>recommended levels<br>(7mm/s) it can lead<br>to premature<br>mechanical failures                                                                                          | <ol> <li>Visual and<br/>measured<br/>vibration levels.</li> <li>Leaking mech.<br/>shaft seal</li> </ol>                                                                                                   | <ol> <li>Install vibration<br/>reducing<br/>components<br/>such as flexible<br/>bellows at<br/>inlet/outlet,<br/>vibration pads on<br/>base plate,<br/>horizontal lateral<br/>support on motor</li> </ol>                  |

# DESMI

| Decerintian of                                                                              |                                                                                                                                                                     |                                                                                                                                                                         |                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of<br>poosible failure                                                          | Impacts on the<br>pump/system                                                                                                                                       | Indications of<br>failure                                                                                                                                               | How to avoid                                                                                                                                                                                  |
| Dry running of the<br>pump – closed<br>inlet/discharge valve                                | Pump should never<br>be run dry, this will<br>damage the<br>mechanical seal in<br>very short time, and<br>will cause bearing<br>failure and total<br>pump breakdown | <ol> <li>Valves closed,<br/>quickly<br/>generating heat<br/>in the pump, high<br/>noises,<br/>increased power<br/>consumption<br/>before total<br/>breakdown</li> </ol> | <ol> <li>Always make<br/>sure pump is<br/>never operated<br/>dry (check<br/>regularly that any<br/>priming systems<br/>are working)<br/>and/or with<br/>closed suction<br/>valves.</li> </ol> |
|                                                                                             |                                                                                                                                                                     |                                                                                                                                                                         | 2. Can operate for<br>a short time<br>towards shut<br>discharge valve,<br>refer to the<br><i>chapter 6.3</i>                                                                                  |
| recommended QH pre                                                                          | Can lead to<br>premature<br>mechancial failure                                                                                                                      | <ol> <li>Readings of<br/>operational/log<br/>data.</li> </ol>                                                                                                           | <ol> <li>Continously<br/>monitoring the<br/>operation.</li> </ol>                                                                                                                             |
| BEP)                                                                                        | and further damage                                                                                                                                                  | <ol> <li>At least diff.<br/>pressure, power<br/>and pump speed.<br/>Compare with<br/>design<br/>specification</li> </ol>                                                | <ol> <li>Use limitations<br/>and alarms in the<br/>control system –<br/>min/max rpm,<br/>flow, pressure</li> </ol>                                                                            |
| Medium and/or<br>pressure and/or<br>liquid temperature<br>not according to<br>specification | Depends on<br>specification and<br>actual difference in<br>this                                                                                                     | <ol> <li>Abnormal wear<br/>and corrosion in<br/>the pump.</li> <li>Leaking<br/>mechanical seal</li> </ol>                                                               | <ol> <li>Mechanical seal<br/>material and<br/>properties are<br/>specified based<br/>on medium and<br/>conditions.</li> </ol>                                                                 |
|                                                                                             |                                                                                                                                                                     |                                                                                                                                                                         | 2. Difference in<br>spec. might<br>require a<br>different<br>mechanical seal /<br>pump materials                                                                                              |



| Description of poosible failure                              | Impacts on the pump/system                                                                              | Indications of failure                                                                                                                   | How to avoid                                                                                                                                          |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water hammer /<br>hydraulic shocks                           | Cause a tremendous<br>pressure shock to<br>the pump and<br>system that could<br>cause serious<br>damage | <ol> <li>Shutting down<br/>and closing<br/>valves creates<br/>noise and give<br/>hydraulic shocks<br/>to the whole<br/>system</li> </ol> | <ol> <li>Have sufficient<br/>ramp down time<br/>and avoid closing<br/>valves too fast.</li> <li>Correct usage of<br/>non-return valves</li> </ol>     |
|                                                              |                                                                                                         | <ol> <li>Will cause<br/>mechanical<br/>damage, not only<br/>to mechanical<br/>seals</li> </ol>                                           |                                                                                                                                                       |
| Pump parts (e.g.<br>vent/flush piping) in<br>pump clogged up | vent/flush piping) in liquid for after short time                                                       | <ol> <li>Ensure proper<br/>filters / mesh size<br/>on suction side<br/>of pump.</li> </ol>                                               |                                                                                                                                                       |
|                                                              | seal and/or missing<br>automatic air venting<br>of shaft seal<br>chamber                                |                                                                                                                                          | <ol> <li>If solids sediment<br/>inside pump<br/>parts (e.g.<br/>piping) they must<br/>be disassembled<br/>and cleaned<br/>inside reqularly</li> </ol> |
| Production faults from maker                                 | Normally discovered during testing at the factory                                                       | 1. Seal leakage<br>after short time                                                                                                      | <ol> <li>Hydrostatic<br/>(leakage) and<br/>performance test<br/>3.1 or 3.2.</li> </ol>                                                                |
|                                                              |                                                                                                         |                                                                                                                                          | 2. Specific<br>classification<br>requirement<br>testing to<br>exclude<br>possibility of<br>production faults                                          |



For the maker to begin troubleshooting we need at least the supporting documents "letter of investigation of pump failure" and possibly "commissioning check list" to be properly filled in. We recommend retrieving information in the following order (to optimize the time usage):

- 1. Description of the failure and pictures of the damage together with operational readings/log data. This can eliminate or verify many of the possible failures and is the easiest and best way to begin troubleshooting.
- If nothing can be concluded after point no. 1. pictures and description of the piping system (especially suction piping) should be provided. Also verify if there has been any observation of excessive vibrations or noise coming from the vessel/pump/system.
- 3. If we cannot conclude possible root cause from information received under point 1. or 2. it might be necessary to send a service engineer to investigation and further troubleshooting.

## Other considerations:

- The mechanical seal is normally not covered under warranty/guarantee, as this is considered a "wear and tear" part.
- A mechanical seal might have some initial leakage like drops or a small trickle during first startup as it has not yet fully settled and become tight. Observe the mechanical seal to see if leakage stops, if not it could be enough to dismantle the mechanical seal and clean it properly to stop the leakage.
- Mechanical seal is the single most exposed/vulnerable part in a 1-stage centrifugal pump; hence a mechanical seal failure is often the first indication of problems. Failure can occur in only a few minutes running in the wrong conditions, so it is often difficult to find root cause of damage if we do not have complete set of information from the vessel.
- In order to avoid serious damage to pumps make sure to follow the maintenance recommendations given by the maker. Inspect the pumps regularly for initial leakage. If leakage is observed it is important to take action to replace seal as quickly as possible.
- Check regularly that the shaft seal leak drain hole in the rear cover (or in bearing cover / bracket on some pump designs) is not clogged up. A clogged shaft seal leak hole can lead to premature bearing failure due to water rising up into the pump ball bearings when the shaft seal is worn out and/or damaged.
- We always recommend having spare mechanical seal (spare part kit) onboard the vessel at all time to avoid standstill of pumps in case of seal failure.

## 8. INSPECTION AND SERVICE PLAN

## 8.1. Supervision of operation



#### 

## **EXPLOSION HAZARD!**

Potentially explosive atmosphere inside the pump will cause death or serious injury.



The pump internals in contact with the fluid to be handled, including the seal chamber and auxiliary systems, must be filled with the fluid to be handled at all times.

Provide sufficient inlet pressure.

Provide an appropriate monitoring system.

## 



**EXPLOSION HAZARD!** 

LEAKAGE OF HOT OR HAZARD FLUIDS!

DAMAGE TO THE PUMP SET!



**RISK OF BURNS AND FIRE HAZARD!** 

Damaged or deformed shaft seal will cause damage to the pump, death or serious injury.

Do the maintenance on the shaft seal regularly.

## 



EXPLOSION HAZARD!

FIRE HAZARD!

DAMAGE TO THE PUMP SET!

# ×3

**RISK OF BURNS!** 

Excessive temperature as a result of bearings running hot or defective bearing seals will cause damage to the pump, death or serious injury.

Regularly check the lubricant level.

Regularly check the rolling-element bearings for running noises.



## 



EXPLOSION HAZARD!

FIRE HAZARD!

## DAMAGE TO THE PUMP SET!



## LEAKAGE OF HOT AND/OR TOXIC FLUIDS!

Incorrectly serviced barrier fluid system will cause damage to the pump, death or serious injury.

Regularly service the barrier fluid system.

Monitor the barrier fluid pressure.

#### CAUTION



#### **RISK OF PROPERTY DAMAGE!**

Dry running will cause increased wear to the pump

Do not operate the pump set without liquid fill.

Do not close the shut-off element in the suction line and/or supply line during pump operation.

## CAUTION



## **RISK OF PROPERTY DAMAGE!**

Too high temperature of fluid handled could damage the pump.

Do not operate the pump against a closed shut-off element for long periods.

Observe the temperature limits in the section on operating limits. (chapter 2.8.4)

While the pump is in operation, observe and check the following:

- The pump must run quietly and free from vibrations at all times.
- Check the shaft seal.
- Check the static seals for leakage.
- Check the rolling element bearings for running noises.

Vibrations, noise and an increased incurrent input occurring during unchanged operating conditions indicate wear.

- Monitor the correct functioning of any auxiliary connections.
- Monitor the stand-by pump.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tif. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



To make sure that the stand-by pumps are ready for operation, start them up once a week.

• Monitor the bearing temperature.

The bearing temperature must not exceed 85 °C (measured at the motor housing).

Inspect the shaft seal for leaks at regular intervals.

- Before inspection of a pump without guard, check that the pump cannot be started unintentionally.
- The system is to be without pressure and drained of liquid.
- The repairman must be familiar with the type of liquid which has been pumped as well as the safety measures is to be taken when handling the liquid.

#### CAUTION



RISK OF PROPERTY DAMAGE!

Operation of the pump at incorrect bearing temperature could damage the pump.

Make sure that the bearing temperature of the pump (set) is not more than 90 °C (measured on the outside of the motor housing).



**NOTE:** After commissioning, increased temperatures may occur at grease-lubricated rolling element bearing due to the running-in process. The final bearing temperature is only reached after a certain period of operation (up to 48 hours depending on the conditions).

On pumps with bearing (/-02 design or Spacer), the drain hole at the mechanical shaft seal must be inspected regularly (see drawing example below). Clean the drain hole as needed. If the drain hole clogs up, leaking liquid and/or vapor from the shaft seal can be forced up into the bearing unit, which can result in a much shorter bearing life than normal.

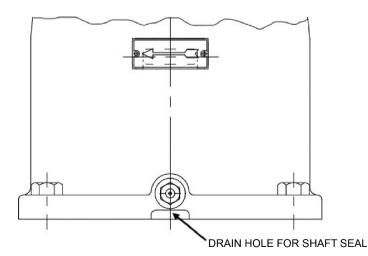



Figure 8-1: Drain hole for shaft seal



Inspection and maintenance intervals for normal applications:

(Half intervals are recommended for a new application – until required intervals can be determined for the actual application)

(If daily inspection is not done remote monitoring of pump is recommended – e.g. via temperature sensors on pump bearings)

| Inspect (I) or Maintain (M) at the<br>indicated calendar time or run<br>time interval – whichever comes<br>first                                          | Daily                                                                                   | Weekly | Monthly | 8000 running<br>hours or<br>12 months | 25000 running<br>hours or<br>60 months |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|---------|---------------------------------------|----------------------------------------|
| Shaft seal leakage (normally less<br>than 0.5 mL/hour (~10 drops/hour) –<br>if more than 5 mL/hour shaft seal<br>replacement is recommended               | I                                                                                       |        |         |                                       |                                        |
| Motor ampere and/or power consumption within normal range                                                                                                 | I                                                                                       |        |         |                                       |                                        |
| Unusual noise                                                                                                                                             | I                                                                                       |        |         |                                       |                                        |
| Unusual vibration (normally less<br>than 2.8 mm/s from pump itself –<br>and less than 7 mm/s incl. external<br>excited vibrations)                        | I                                                                                       |        |         |                                       |                                        |
| Pressure gauge readings to be<br>within normal range (i.e. keep flow<br>within 70 to 120% of BEP flow if<br>allowed by NPSHa <> NPSHr, see<br>note below) | I                                                                                       |        |         |                                       |                                        |
| Unusual bearing temperatures<br>(normally less than 85°C)                                                                                                 |                                                                                         | I      |         |                                       |                                        |
| Check (clean if required) drain hole for shaft seal                                                                                                       |                                                                                         |        | I (M)   |                                       |                                        |
| For pump with bearing(s): Check<br>gap between coupling and bearing<br>bracket/cover – to be at least 1 mm<br>(see Section 10.3.8)                        |                                                                                         |        | I       |                                       |                                        |
| Pumps not running: Rotate pump<br>shaft 2 to 3 revolutions or start<br>shortly (if pump is filled with liquid)                                            |                                                                                         |        | м       |                                       |                                        |
| Regrease pump and/or motor bearings                                                                                                                       | Refer to the following pages and motor manual (if motor bearings are re-<br>greaseable) |        |         |                                       |                                        |
| Spacer coupling elastomer(s)                                                                                                                              |                                                                                         |        |         | I                                     |                                        |
| Replace mechanical shaft seal and V-ring                                                                                                                  |                                                                                         |        |         |                                       | м                                      |
| Replace pump bearings                                                                                                                                     |                                                                                         |        |         |                                       | м                                      |
| Replace Spacer coupling elastomer(s)                                                                                                                      |                                                                                         |        |         |                                       | М                                      |

Note: Operation outside 70 to 120 % of BEP flow reduce the pump life (incl. shaft seal and pump

bearings) significantly.

## **BEARINGS in 12 combination**

The life depends on the relubrication, size and quality of the bearing in the motor.

#### **BEARINGS in 02 combination**

**Ø215/265:** The bearing is dimensioned for a nominal (i.e. only obtainable for ideal greasing and operating conditions) life of 25,000 working hours. The bearing is lubricated for life and requires no attention, but is to be replaced in case of noise or bearing wear.

Ø330/415/418/465/525: The bearing is dimensioned for a nominal (i.e. only obtainable for ideal greasing and operating conditions) life of 100,000 working hours and is to be relubricated according to the below table. The bearing is to be replaced in case of noise or bearing wear.

| Pump<br>Assembly                                      | Ø330/415/418/465/525                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Light bearing housing<br>(single-row ball bearing)    | The bearing is to be relubricated through the lubricator nipple (84) in the bearing cover (15). In connection with replacement, the bearings are to be mounted with the RS-sealing facing downwards, fill the bearing itself with grease and place a grease bead on the bearing towards the shaft in a quantity corresponding to the table below. |
| Heavy bearing housing<br>(two angular ball bearings): | The bearings are to be relubricated through the lubricator nipple (84) in the bearing cover (15). Fill the bearings with grease and place a grease bead on the bearing towards the shaft in a quantity corresponding to the table below.                                                                                                          |

| Pump       | Assembly                 | Interval<br>(running hours) | Quantity |
|------------|--------------------------|-----------------------------|----------|
| NSL80-330  |                          |                             |          |
| NSL100-330 | Light bearing<br>housing |                             |          |
| NSL125-330 |                          | 4500 hours                  | 30 g     |
| NSL100-415 |                          |                             |          |
| NSL125-415 |                          |                             |          |

DESMI



| Pump                                                               | Assembly                 | Interval<br>(running hours) | Quantity |
|--------------------------------------------------------------------|--------------------------|-----------------------------|----------|
| NSL150-330<br>NSL200-330<br>NSL250-330<br>NSL150-415               | Heavy bearing<br>housing | 4500 hours                  | 40 g     |
| NSL200-415<br>NSL250-415<br>NSL300-415<br>NSL300-418               | Heavy bearing<br>housing | 4500 hours                  | 50 g     |
| NSL300-465<br>NSL200-525<br>NSL250-525<br>NSL300-525<br>NSL350-525 | Heavy bearing<br>housing | 4500 hours                  | 80 g     |

## **BEARINGS** in 13 combination and 14 combination

**Ø215/265:** The bearings are dimensioned for a nominal (i.e. only obtainable for ideal greasing and operating conditions) life of 25,000 working hours and are to be relubricated according to the table below.

Ø330/415/418/465/525: The bearings are dimensioned for a nominal (i.e. only obtainable for ideal greasing and operating conditions) life of 100,000 working hours and are to be relubricated according to the table below.

| Pump<br>Assembly                          | Ø215/265                                                                                                                                                                                                                                                                                                                       | Ø330/415/418/465/525                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Light bearing housing<br>(13 combination) | The bearings are lubricated for<br>life and require no attention but<br>are to be replaced in case of<br>noise or bearing wear. In<br>connection with replacement,<br>the lower bearing is to be<br>mounted with an RS - sealing<br>facing downwards, fill the<br>bearing itself with grease and<br>place a grease bead on the | The bearings are relubricated<br>through the lubricator nipples<br>(84) at top and bottom of the<br>bearing housing (18). In<br>connection with replacement,<br>the bearings are to be<br>mounted with the RS-sealing<br>facing downwards, fill the<br>bearing itself with grease and<br>place a grease bead on the |



| Pump<br>Assembly      | Ø215/265                           | Ø330/415/418/465/525            |  |
|-----------------------|------------------------------------|---------------------------------|--|
|                       | bearing towards the shaft in a     | bearing towards the shaft in a  |  |
|                       | quantity corresponding to the      | quantity corresponding to the   |  |
|                       | table below.                       | table below.                    |  |
|                       | Only the upper bearing (15) is     | Both bearings are relubricated  |  |
|                       | lubricated for life, whereas the   | through lubricator nipples (84) |  |
|                       | lower is to be relubricated        | at top and bottom of the        |  |
|                       | through the lubricator nipple (84) | bearing housing (18). See       |  |
|                       | in accordance with the table       | instructions for ø215/265. The  |  |
| Heavy bearing housing | below. The replacement of          | top bearing (15) is to be       |  |
| (14 combination)      | bearings is to be made under       | mounted with the RS - sealing   |  |
|                       | the same conditions and            | facing downwards, fill the      |  |
|                       | according to the same              | bearing itself with grease and  |  |
|                       | procedure as for 13                | place a grease bead on the      |  |
|                       | combination, however, the RS -     | bearing towards the shaft in a  |  |
|                       | sealing is not to be considered.   | quantity corresponding to the   |  |
|                       |                                    | table below.                    |  |

| Pump                                                              | Assembly                 | Interval<br>(running hours) | Quantity<br>Bottom<br>bearing (13) | Quantity<br>Top bearing<br>(15) |
|-------------------------------------------------------------------|--------------------------|-----------------------------|------------------------------------|---------------------------------|
| ø215/265                                                          | Light bearing<br>housing | Lubricated for life         | 40 g                               | Lubricated for<br>life          |
| ø215/265                                                          | Heavy bearing<br>housing | 8000 hours                  | 65 g                               | Lubricated for<br>life          |
| NSL80-330<br>NSL100-330<br>NSL125-330<br>NSL100-415<br>NSL125-415 | Light bearing<br>housing | 4500 hours                  | 30 g                               | 15 g                            |
| NSL150-330<br>NSL200-330<br>NSL250-330<br>NSL150-415              | Heavy bearing<br>housing | 4500 hours                  | 40 g                               | 20 g                            |

INSPECTION AND SERVICE PLAN



| Pump                                                               | Assembly                 | Interval<br>(running hours) | Quantity<br>Bottom<br>bearing (13) | Quantity<br>Top bearing<br>(15) |
|--------------------------------------------------------------------|--------------------------|-----------------------------|------------------------------------|---------------------------------|
| NSL200-415<br>NSL250-415<br>NSL300-415<br>NSL300-418               | Heavy bearing<br>housing | 4500 hours                  | 50 g                               | 25 g                            |
| NSL300-465<br>NSL200-525<br>NSL250-525<br>NSL300-525<br>NSL350-525 | Heavy bearing<br>housing | 4500 hours                  | 80 g                               | 35 g                            |

If the pump liquid temperature is below 80 °C, the following types of grease are recommended:

| ESSO    | Beacon 2                 |
|---------|--------------------------|
| BP      | Energrease LS EP 2       |
| Shell   | Gadus S5 V100 2          |
| Mobil   | Mobil lux grease EP 2    |
| Castrol | Spheerol AP 2 or AP 3    |
| Техасо  | Multifak EP 2            |
| Q8      | Rembrandt EP 2 or Rubens |
| Statoil | UniWay Li 62             |
| GULF    | GulfSea HYPERBAR LC3     |

If the pump liquid temperature is above 80 °C, high-temperature grease is recommended, e.g. SKF LGHP2.

DESMI use SKF LGHP2 as standard.

Vibration levels higher than 7 mm/s at pump bearing are considered damaging and will normally result in significantly shorter grease and/or bearing life – especially for pumps not running. Hence shorter re-greasing intervals might be required for pumps installed where external excited vibration levels can be higher than 7 mm/s.



**NOTE:** Relubrication can cause a (usually temporary) bearing temperature rise of up to approx. 20°C - especially by mixing different types of grease and / or by overlubricating the bearing.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tif. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



NOTE: Grease used for re-greasing must be compatible with the grease in the bearing unit!

### 8.2. Inspection work

#### 



Too high temperature caused by friction, impact or frictional sparks can cause fire, and if

deformation for ensuring sufficient distance from rotating parts.

Regularly check the coupling guard regarding screws being tightened and/or regarding

#### 8.2.1. Cleaning filter

#### CAUTION



**RISK OF PROPERTY DAMAGE!** 

FIRE AND EXPLOSION HAZARD!

not avoided, will lead to death or serious injury.

Incorrect inlet pressure due to clogged filter in the suction line could damage the pump.

Monitor contamination of filter with suitable instruments (for example, using differential pressure gauge).

Clean the filter at appropriate intervals.

#### 8.2.2. Drainage and cleaning

#### **WARNING**



#### ENVIRONMENTAL HAZARD!

Hot fluids, consumables and supplies are hazardous to health and to the environment.

Collect and properly dispose of flushing fluid and any residues of the fluid handled.

Wear safety clothing and a protective mask.

Dispose of all fluids in accordance with local regulations.

- 1. Drain the fluid handled by dismantling the pipe plug (3) at the bottom of the pump.
- 2. Always flush the system if it has been used for handling noxious, explosive, hot or other

**JESM** 



- 3. Always flush and clean the pump before transporting it to the workshop.
- 4. Provide a certificate of decontamination for the pump.



## 9. DISMANTLING THE PUMP SET

#### 



#### IGNORING INSTRUCTIONS HAZARD!

Insufficient preparation of work on the pump (set) will cause death or serious injury.

Properly shut down the pump set. (See chapter 6.5)

#### **WARNING**



#### SPECIAL SKILLS REQUIRED!

Repair and maintenance procedures require professional knowledge and thorough training regarding the tasks and working methods.

Do not do any repair or maintenance tasks without proper training.

Always follow the instructions.

Use appropriate personal protective equipment, depending on the task.



#### HOT SURFACE HAZARD!

Touching any part of a hot pump can cause severe injury.

Always allow the pump set to cool down to ambient temperature.

#### **WARNING**

**WARNING** 



FALLING LOAD HAZARD!

Incorrect lifting methods and faulty lifting equipment, can cause lifting equipment to snap under load, which could cause death or severe injury.

Use appropriate transport devices, lifting equipment and lifting tackle to move heavy assembies or components.

Always observe the safety instructions and information.

For any work on the motor, observe the instructions of the relevant motor manufacturer.

For dismantling and reassembly observe the exploded views and the general assembly drawing.

In case of damage you can always contact our service staff.





**NOTE:** Before dismantling the pump make sure that it has stopped. Empty the pump of liquid before it is dismantled from the piping system. If the pump has been pumping dangerous liquids you are to be aware of this and take the necessary safety measures.

If the pump has been pumping hot liquids, take great care that it is drained before it is removed from the piping system.



**NOTE:** All maintenance, service and installation work can be carried out by DESMI or authorized workshops. Contact our sales staff to discuss your requirement.



**NOTE:** After a prolonged period of operation the individual components may be hard to pull off the shaft. If this is the case, use a brand name penetrating agnet and/or – if possible – an appropriate puller.

If regular maintenance log off the pump/motor cannot be demonstrated, the manufacturer's warranty obligations shall become void.

#### Preparing the pump set

- 1. De-energise the pump set and secureit against unintentional start-up.
- 2. Reduce pressure in the piping by opening a consumer installation.
- 3. Disconnect and remove all auxiliary pipework.

#### Draining the pump

When the piping system has been drained, note that there is still liquid in the pump. Remove the liquid by dismantling the pipe plug (3) at the bottom of the pump.

#### Dismounting the complete pump set



NOTE: The pump casing can remain installed in the piping for further dismantling.

The notes and steps stated in have been observed/carried out.

- 1. Disconnect the discharge and suction nozzle from the piping.
- 2. Depending on the pump/motor size, unscrew the bolts that fix the support foot and/or motor foot to the foundation.

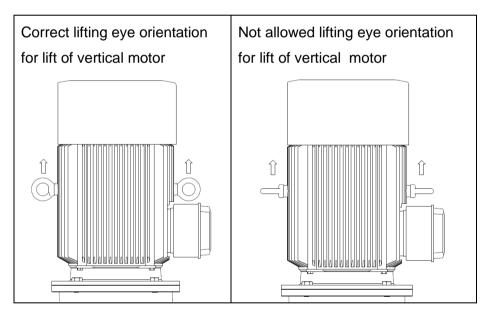
DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



3. Remove the complete pump set from the piping.

#### Remove the motor

#### **WARNING**




#### **CRUSHING HAZARD!**

Removing the motor could cause it tipping over leading to death or severe injury. Suspend or support the motor to prevent it from tipping over.

Note: On NSL /-12 design pumps the motor, motor bracket, rear cover and shaft with impeller shall be lifted away from the pump casing as one assembled unit !

Lifting eyes must be of the type shown and shoulder must rest on the electric motor – if required use a spring washer if the lifting eye cannot be tightened and placed in the correct orientation as shown below.



#### Remove the back pull-out unit

#### **WARNING**



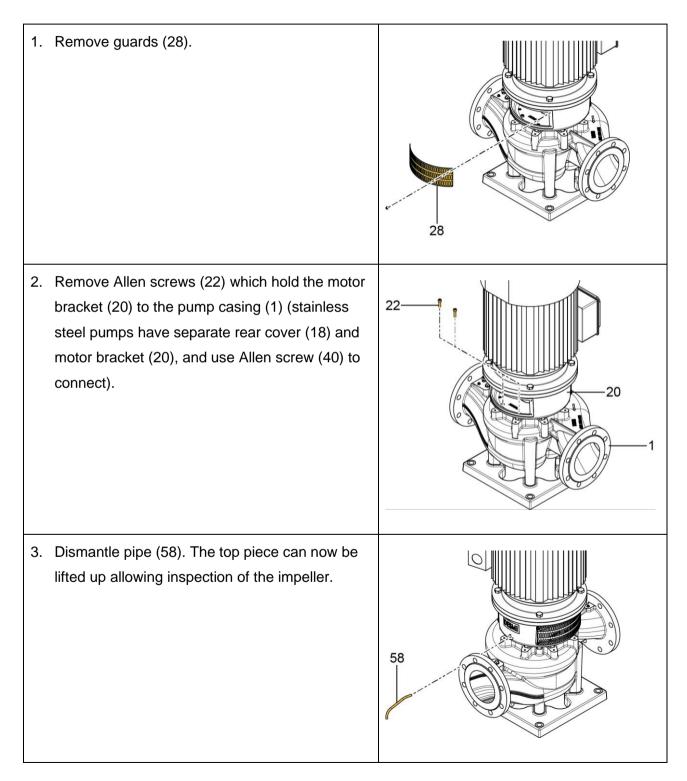
#### **CRUSHING HAZARD!**

Removing the back pull-out unit could cause it tipping over leading to death or severe injury.

Suspend or support the back pull-out unit at the pump end.

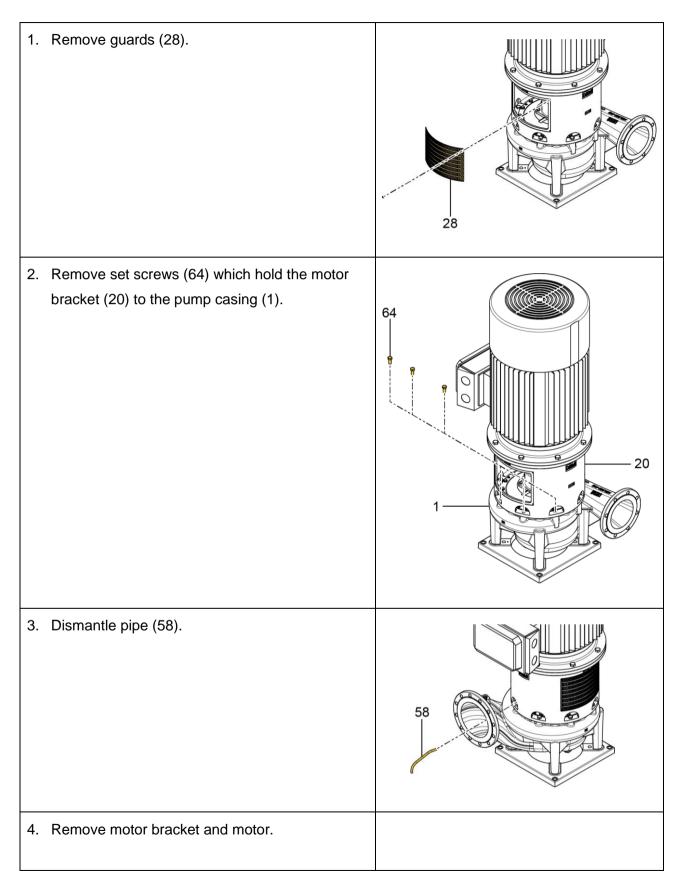
# **DESMI** 9.1. 02 and 12 combinations

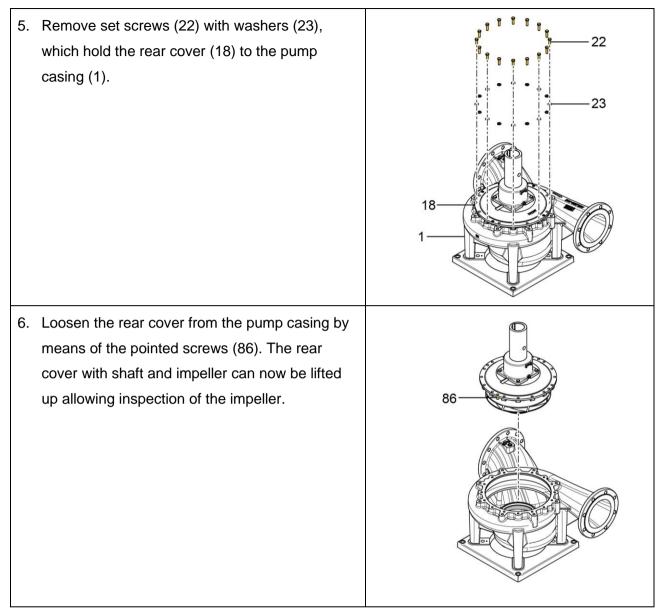
### 9.1.1. Access to impeller


The numbers in brackets refer to the position numbers on the assembly drawing.

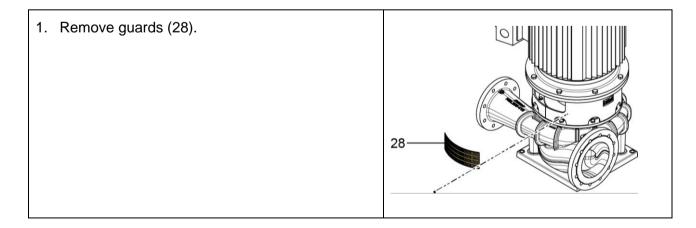
#### Ø215/265-02 combination

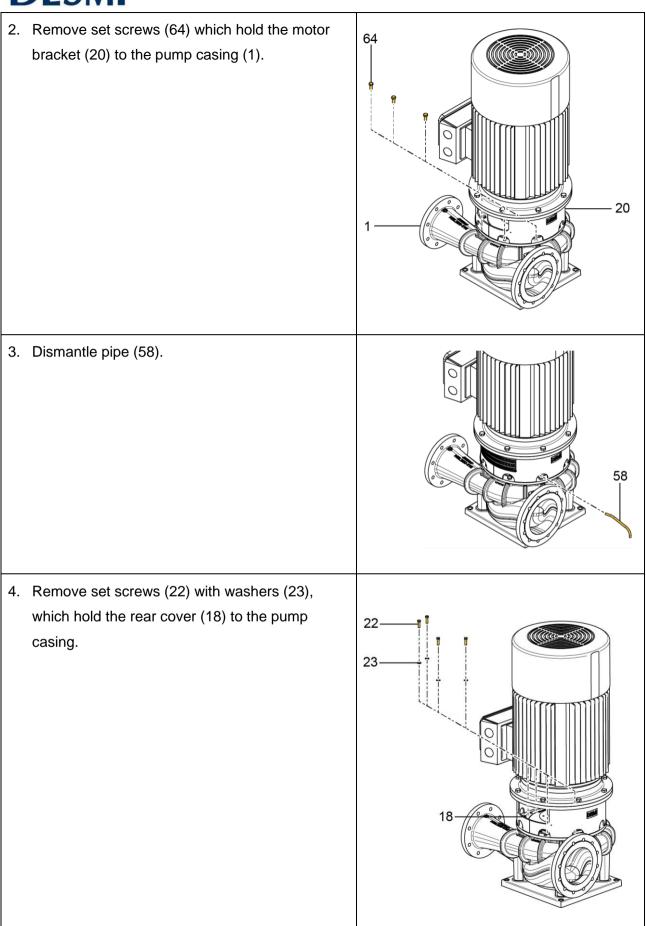
| 1. | Remove guards (28).                                                                                              |    |
|----|------------------------------------------------------------------------------------------------------------------|----|
| 2. | Remove Allen screws (22) which hold the rear<br>cover (18) and the motor bracket (20) to the<br>pump casing (1). |    |
| 3. | Dismantle pipe (58).                                                                                             | 58 |


 Remove motor bracket and motor. The rear cover with shaft and impeller can now be lifted up allowing inspection of the impeller.

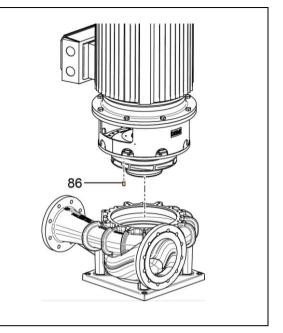

#### Ø215/265-12 combination







#### Ø330/415/418/465/525-02 combination



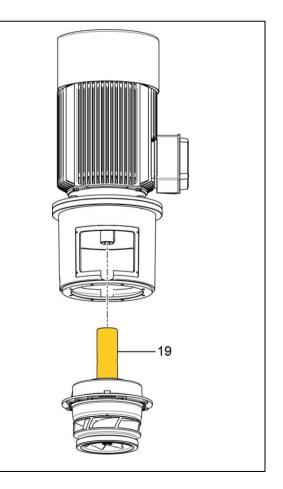



#### Ø330/415/418/465/525-12 combination

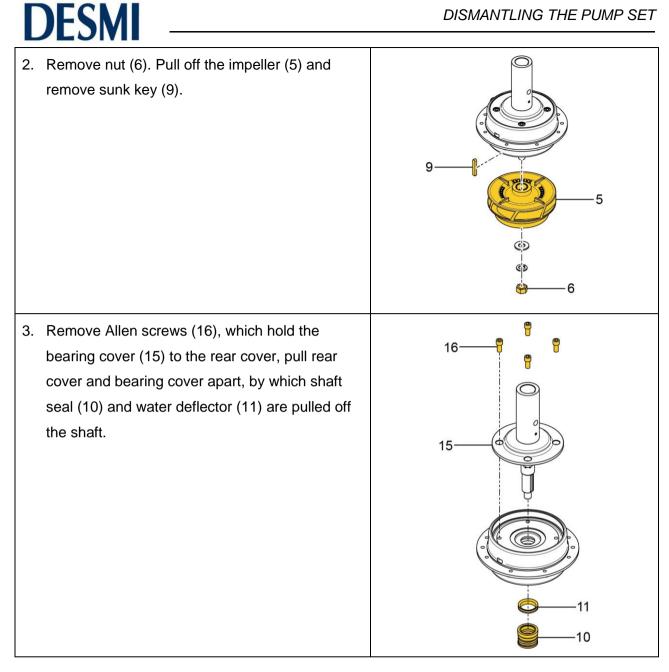




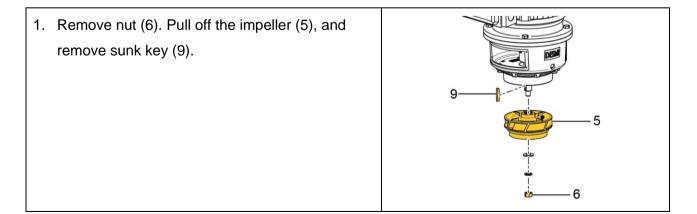
 Loosen the rear cover from the pump casing by means of the pointed screws (86). The motor and motor bracket with rear cover and shaft with impeller can now be lifted up allowing inspection of the impeller.



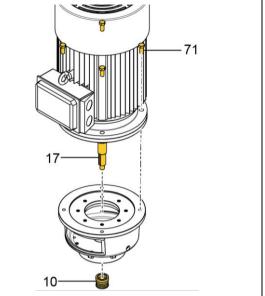

DESMI


#### 9.1.2. Dismantling shaft seal

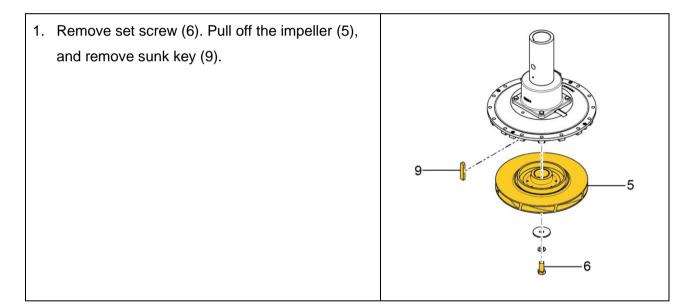
#### Ø215/265-02 combination


 Pull the rear cover off the motor bracket, by which the coupling (19) is pulled off the motor shaft.





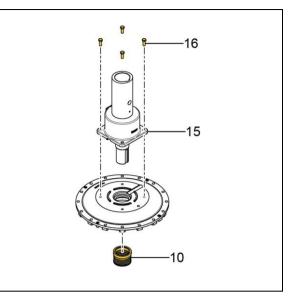




#### Ø215/265-12 combination



 Remove set screws (71) and pull motor bracket and electric motor with shaft (17) apart, by which the shaft seal (10) is pulled off the shaft.




#### Ø330/415/418/465/525-02 combination

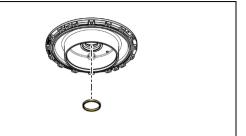


#### DISMANTLING THE PUMP SET

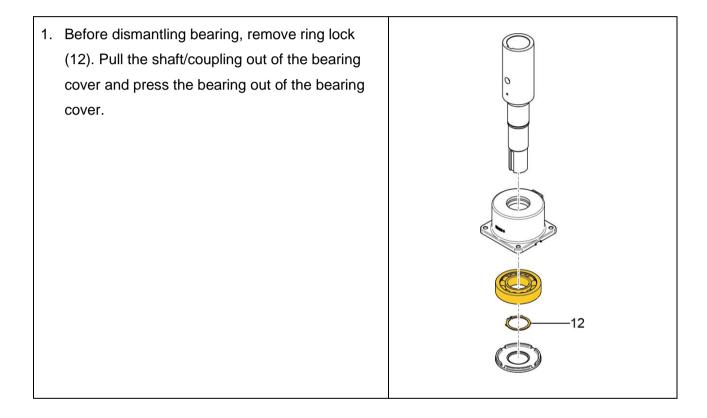


 Remove set screws (16), which hold the bearing cover (15) to the rear cover, pull rear cover and bearing cover apart, by which the shaft seal (10) is pulled off the shaft.




#### Ø330/415/418/465/525-12 combination

| 1. | Remove set screw (6). Pull off the impeller (5),<br>and remove sunk key (9).                   |  |
|----|------------------------------------------------------------------------------------------------|--|
| 2. | Pull rear cover out of motor bracket, by which<br>the shaft seal (10) is pulled off the shaft. |  |




#### 9.1.3. Dismantling seat

 Press out the seat from behind the rear cover or motor bracket (ø215/265 in 12 combination ).



#### 9.1.4. Dismantling bearing (only 02 combination)

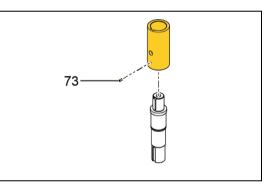




When the pump has been dismantled, check the following parts for wear and damage:

- Sealing ring/impeller: Max. clearance 0.4-0.5 mm measured in radius.
- Shaft seal/rear cover: Check the seat for flatness and cracks.

Check the rubber parts for elasticity.

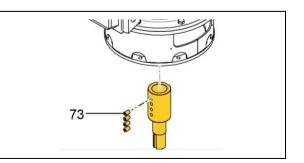

- Bearings: Replace in case of wear and noise.

#### 9.1.6. Dismantling coupling (02 combination) / shaft (12 combination)

It is not necessary to remove the coupling in the 02 combination or the shaft in the 12 combination during normal maintenance. However, in the 12 combination the shaft must be removed when the lower bearing in the electric motor is replaced.

#### 02 combination:

 Dismantle the coupling by removing the pointed screw (73) and pull off the coupling. The coupling might be heated to help dismantling.



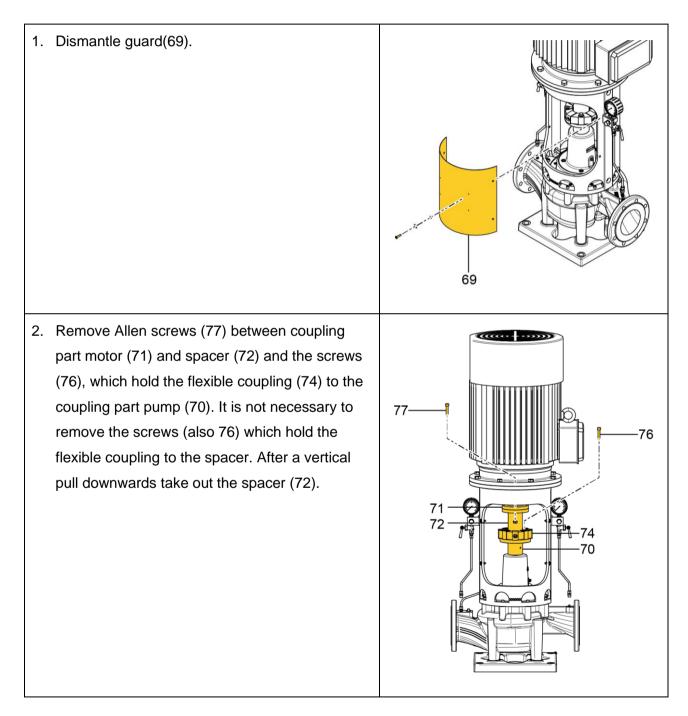



**NOTE:** If the coupling is removed on the assembled pump, take care that the bearing is not damaged by pulling too hard on the coupling. If the coupling is removed after dismantling the pump, fix the shaft at the thread at the opposite shaft end, while the coupling is pulled off.

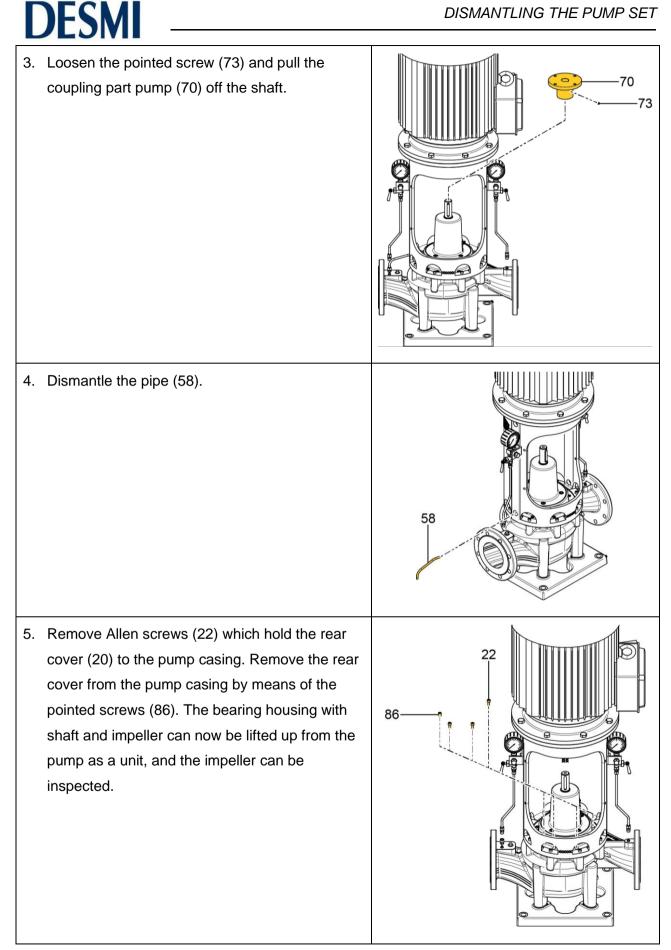
#### 12 combination :

 Remove pointed screws (73). Pull off the shaft. The coupling might be heated to facilitate dismantling.



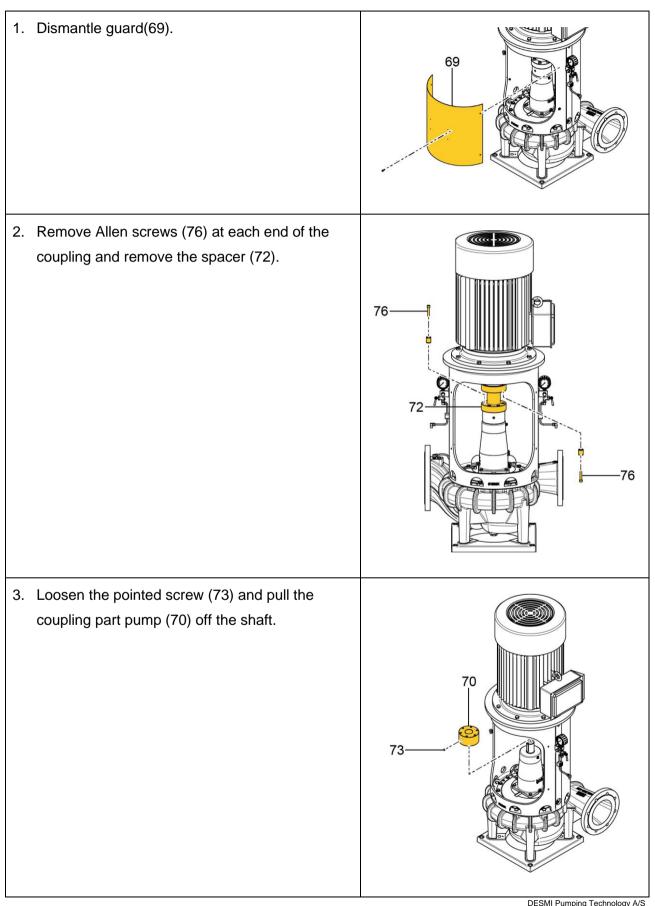



### 9.2. 13 and 14 combinations

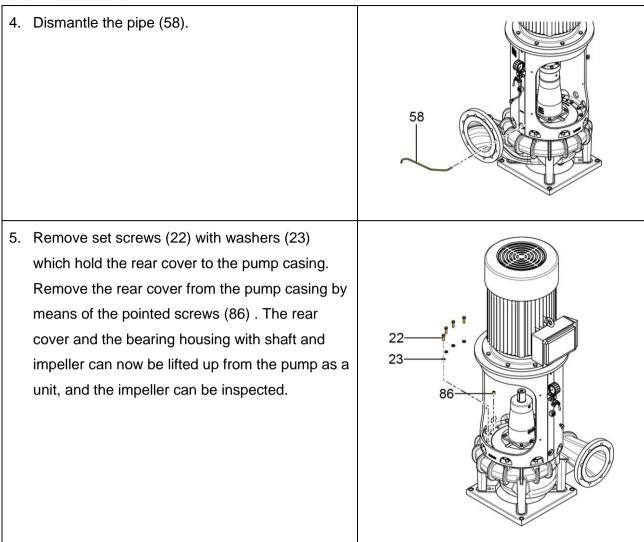

#### 9.2.1. Access to impeller

The numbers in brackets refer to the position numbers on the assembly drawing.

#### Ø215/265



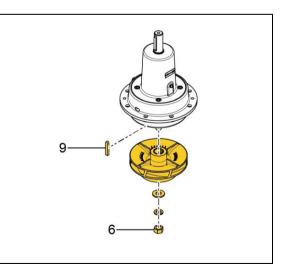

#### **DISMANTLING THE PUMP SET**






#### Ø330/415/418/465/525



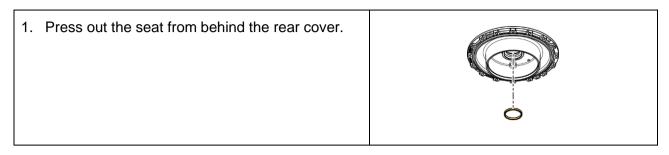

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com



### 9.2.2. Dismantling shaft seal

#### Ø215/265

 Remove nut (6). Pull off the impeller and remove sunk key (9).




2. Remove Allen screws (19), which hold the bearing housing to the rear cover, pull rear cover and bearing housing apart, by which the shaft seal (10) and water deflector (11) are pulled off the shaft.

#### Ø330/415/418/465/525

| 1. | Remove set screw (6). Pull off the impeller and remove sunk key (9).                                                                                                                | 9 6 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2. | Remove set screws (19), which hold the bearing<br>housing to the rear cover, pull rear cover and<br>bearing housing apart, by which the shaft seal<br>(10) is pulled off the shaft. |     |

# 9.2.3. Dismantling seat



### 9.2.4. Dismantling shaft with bearings

1. Before dismantling the shaft with bearings, remove the sunk key (16). The shaft can now be pulled out of the bearing housing allowing inspection of the bearings.
16

### 9.2.5. Inspection

When the pump has been dismantled, check the following parts for wear and damage:

- Sealing rings/impeller: Max. clearance 0.4-0.5 mm measured in radius.
- Shaft seal/rear cover: Check the seat for flatness and cracks.

Check the rubber parts for elasticity.

- Bearings: Replace in case of wear and noise.

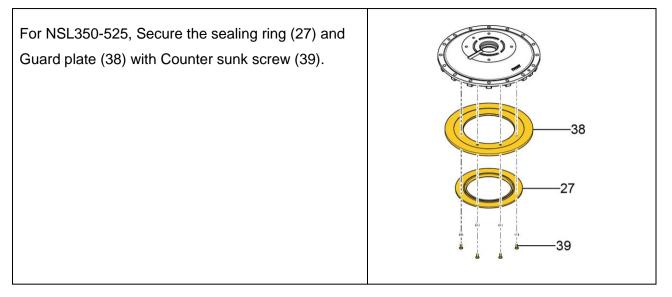
# **10. ASSEMBLING THE PUMP SET**





**RISK OF PROPERTY DAMAGE!** 

The type of accessories used during assembling work including oil and grease shall meet the the requirement from application, food-approved if required.


## **10.1. Tightening Torques**

| Part. No. |           |                     | Tightening Torque (Nm)                            |                                                             |  |
|-----------|-----------|---------------------|---------------------------------------------------|-------------------------------------------------------------|--|
| NSL-02/12 | NSL-13/14 | Thread Size<br>(mm) | Pump Casing/Rear<br>Cover in GG20/Rg5<br>material | Pump Casing/Rear<br>Cover in<br>GGG40/NiAIBz/SS<br>material |  |
|           |           | M8                  | 8                                                 | 16                                                          |  |
| 6         | 4         | M12                 | 27                                                | 54                                                          |  |
|           |           | M16                 | 65                                                | 130                                                         |  |
| 22        |           | M8                  | 8                                                 | 16                                                          |  |
|           |           | M12                 | 27                                                | 54                                                          |  |
|           |           | M16                 | 65                                                | 130                                                         |  |
| 16 19     | M12       | 27                  | 54                                                |                                                             |  |
|           | M16       | 65                  | 130                                               |                                                             |  |
|           |           | M16                 | 65                                                |                                                             |  |
| 6         | 6         |                     | 130                                               |                                                             |  |
|           |           | M24                 | 220                                               |                                                             |  |
|           | 60        | M12                 | 54                                                |                                                             |  |
| 71        |           | M16                 | 130                                               |                                                             |  |
|           |           | M20                 | 240                                               |                                                             |  |
|           |           | M24                 | 400                                               |                                                             |  |



### 10.2.1. Fitting sealing rings

| <ol> <li>When fitted, the sealing ring (4) is to bear<br/>against the shoulder of the pump casing.</li> </ol>   |  |
|-----------------------------------------------------------------------------------------------------------------|--|
| For Ø330/415/418/525, when fitted the sealing ring (27) is to bear against the shoulder of the rear cover (18). |  |
| For ø418, secure the sealing ring (27) with counter sunk screws (105).                                          |  |



#### 10.2.2. Fitting shaft seal

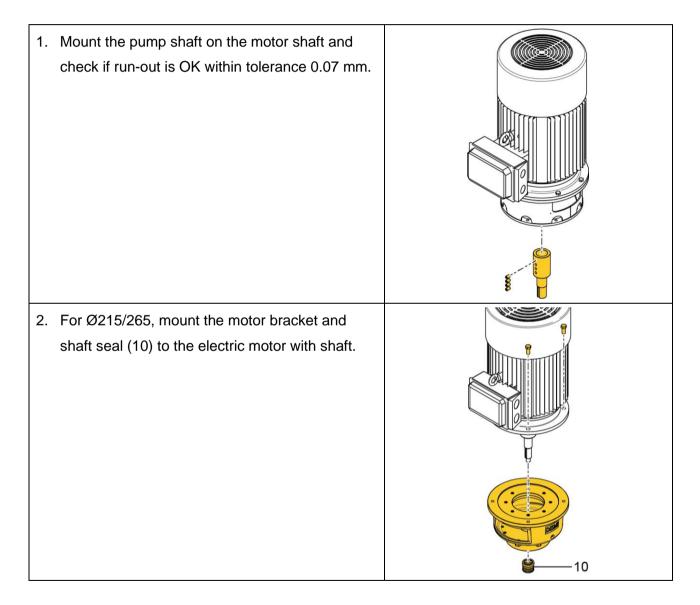
For pumps with balanced shaft seal type ELK (="-L" included in pump code on name plate) please read appendix A.

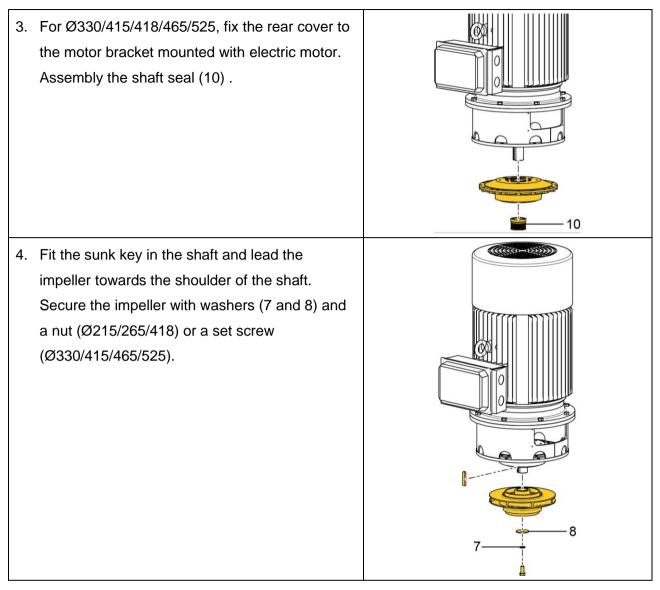
| 1. | Clean the recess in the rear cover or the motor bracket (ø215/265).                                                                                                                                                                                                 |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2. | Remove the protective coating of the seat<br>without scratching the lapped surface and<br>lubricate the outer rubber L-ring of the seat with<br>a thin layer of silicone grease. Use a brush and<br>ensure that no silicone grease ends up at the<br>slide surface. |   |
| 3. | Press the seat into place with the fingers and check that all parts are correctly imbedded.                                                                                                                                                                         | 0 |



**NOTE:** If it is necessary to use tools for assembling, then protect the sliding surface of the seat to prevent it from being scratched or cut. Lubricate inner surface of the slide ring rubber bellows with a thin layer of silicone grease (ensure that no silicone grease ends up at the slide surfaces) and push it over the shaft. The use of a conical fitting bush as shown on the assembly drawing is recommended to avoid that the rubber bellows is cut.

DESMI Pumping Technology A/S Tagholm 1 9400 Nørresundby – Denmark Tlf. nr.: +45 96 32 81 11 Fax +45 98 17 54 99 E-mail: desmi@desmi.com www.desmi.com





**NOTE:** Push the slide ring over the shaft with the hand. If the rubber bellows is tight, use a fitting tool and take care that the slide ring is not damaged. If the carbon ring is not fixed, it is important to check that it is fitted correctly, i.e. the chamfered/lapped side is to face the seat. The carbon ring can be held by a little grease.

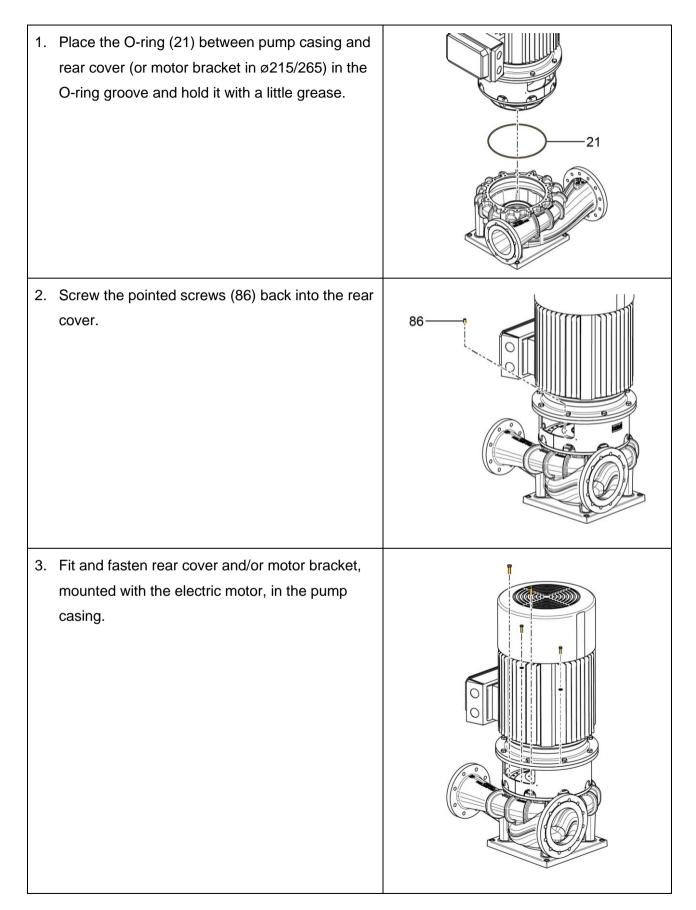


**NOTE:** When using silicone grease on the shaft, the bellows will settle and seat in about 15 minutes, and until then tightness should not be expected. After start, check by viewing the leak hole that there are no leaks.

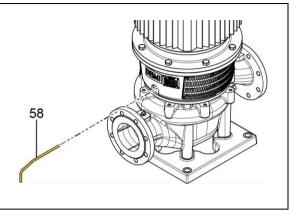
### 10.2.3. Fitting impeller








**NOTE:** Take care that the ring at the end of the shaft seal spring locates in the recess of the impeller.






#### 10.2.4. Fitting rear cover or motor bracket



4. Fit pipe (58).





**NOTE:** When placing the O-ring, check the material of the O-ring first. As standard the material is nitrile, but it might be EPDM which will be damaged by mineral grease. Use soft soap or silicone grease for EPDM.

#### 10.2.5. Shaft

When the pump has been assembled, check that the shaft rotates freely. In case the shaft has been dismantled, tap the shaft towards the shaft end of the electric motor by means of a plastic hammer, and fasten the pointed screws (first the middle screw) according to the below table. Check that the wobble, measured as close to the shaft end as possible, is within the limits indicated in the table.

| Motor size | Dimension Pointed<br>screws | Torque Pointed<br>screws | Max. wobble |
|------------|-----------------------------|--------------------------|-------------|
| 100/112    | M6                          | 10 Nm                    | 70 µm       |
| 132        | M8                          | 24 Nm                    | 70 µm       |
| 160        | M10                         | 40 Nm                    | 70 µm       |
| 180        | M12                         | 55 Nm                    | 70 µm       |
| 200        | M12                         | 75 Nm                    | 70 µm       |
| 225        | M16                         | 160 Nm                   | 70 µm       |
| 250        | M16                         | 160 Nm                   | 70 µm       |
| 280        | M16                         | 160 Nm                   | 70 µm       |
| 315        | M16                         | 160 Nm                   | 70 µm       |
| 315 / 355  | M20                         | 320 Nm                   | 70 µm       |

# DESMI 10.3. 02, 13 and 14 combinations

### 10.3.1. Fitting sealing rings

| <ol> <li>When fitted, the sealing ring (4) in the pump<br/>casing (1) is to bear against the shoulder of the<br/>pump casing.</li> </ol> |    |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| For Ø330/415/418/465/525, when fitted, the sealing ring (27) in the rear cover is to bear against the shoulder of the rear cover.        | 27 |
| For Ø418, secure the sealing ring (27) with counter sunk screws.                                                                         | 27 |
| For NSL350-525, secure the sealing ring (27) and Guard plate (38) with Counter sunk screw (39).                                          |    |



### 10.3.2. Fitting bearings or shaft with bearings

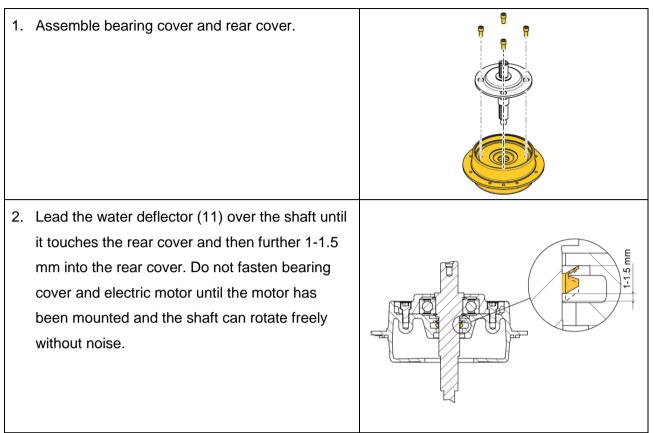
Note: Fill open and semi-open bearings with grease before assembly with bearing cover (ref. Section 8).

#### In 02 combination:

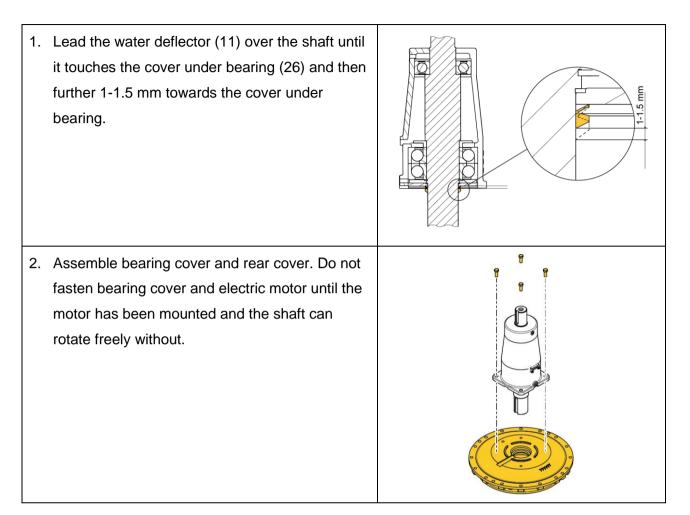
| 1. | Place the support disc (14) (grease valve ring in ø330/415/418/525 with angular ball bearings) in the bearing cover and press the bearing into place in the bearing cover. Lead the shaft (17) through the bearing cover, support disc and bearing, and press the bearing into place up against the support disc. |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Fit ring lock (12).                                                                                                                                                                                                                                                                                               |    |
| 3. | Fit cover under bearing (26). (Only for Ø330/415/418/465/525)                                                                                                                                                                                                                                                     |    |
|    | If shim(s) are mounted between Pos. 26 and<br>bearing then also mount shim(s) when bearings<br>are replaced.                                                                                                                                                                                                      |    |
|    | DESMI spare part numbers for 0.1 mm thick shims:                                                                                                                                                                                                                                                                  | 26 |
|    | 705057 (SHIM Ø110/140)                                                                                                                                                                                                                                                                                            |    |
|    | 707214 (SHIM Ø130/160)                                                                                                                                                                                                                                                                                            |    |
|    | 722876 (SHIM Ø160/190)                                                                                                                                                                                                                                                                                            |    |



#### In 13 and 14 combinations:


Note: Fill open and semi-open bearings with grease before assembly with bearing housing (ref. Section 8).

| 1. | Lead shaft with bearings into the bearing housing. Fit sunk key (16).                                  | 16       |
|----|--------------------------------------------------------------------------------------------------------|----------|
| 2. | Fit cover under bearing (26). (Only for Ø330/415/418/465/525)                                          |          |
|    | If shim(s) are mounted between Pos. 26 and bearing then also mount shim(s) when bearings are replaced. |          |
|    | DESMI spare part numbers for 0.1 mm thick shims:                                                       |          |
|    | 705057 (SHIM Ø110/140)                                                                                 | <b>6</b> |
|    | 707214 (SHIM Ø130/160)                                                                                 |          |
|    | 722876 (SHIM Ø160/190)                                                                                 |          |

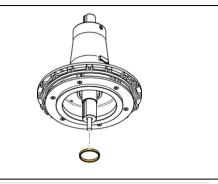

For pumps with Lip seal in cover under bearing please read Appendix B.

# 10.3.3. Fitting water deflector

#### Ø215/265








#### 10.3.4. Fitting shaft seal

For pumps with balanced shaft seal type ELK (="-L" included in pump code on name plate) please read appendix A.

| 1. | Clean the recess in the rear cover.                                                                                                                                                                                                               |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2. | Remove the protective coating of the seat<br>without scratching the lapped surface and<br>lubricate the outer rubber L-ring on the seat with<br>a thin layer of silicone grease. Use a brush and<br>ensure that no silicone grease ends up at the |  |
|    | slide surface.                                                                                                                                                                                                                                    |  |

 Press the seat into place with the fingers and check that all parts are correctly imbedded.





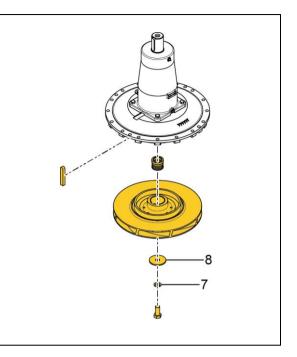
**NOTE:** If it is necessary to use tools for assembling, then protect the sliding surface of the seat to prevent it from being scratched or cut. Lubricate the inner surface of the slide ring rubber bellows with a thin layer of silicone grease (ensure that no silicone grease ends up at the slide surfaces) and push it over the shaft. The use of a conical fitting bush as shown on the assembly drawing is recommended to avoid that the rubber bellows is cut.



**NOTE:** Push the slide ring over the shaft with the hand. If the rubber bellows is tight, use a fitting tool and take care that the slide ring is not damaged. If the carbon ring is not fixed, it is important to check that it is fitted correctly, i.e. the chamfered/lapped side is to face the seat. The carbon ring can be held by a little grease.



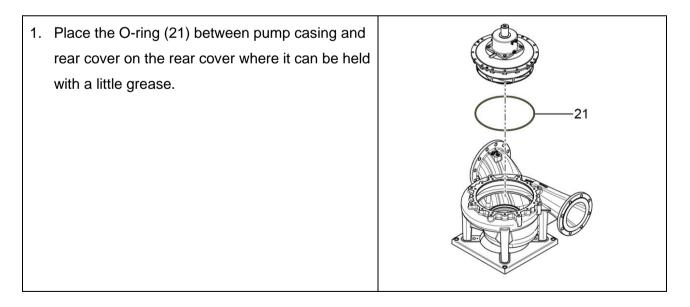
**NOTE:** When using silicone grease on the shaft, the bellows will settle and seat in abt. 15 minutes, and until then tightness should not be expected. After start, check by viewing the leak hole that there are no leaks.

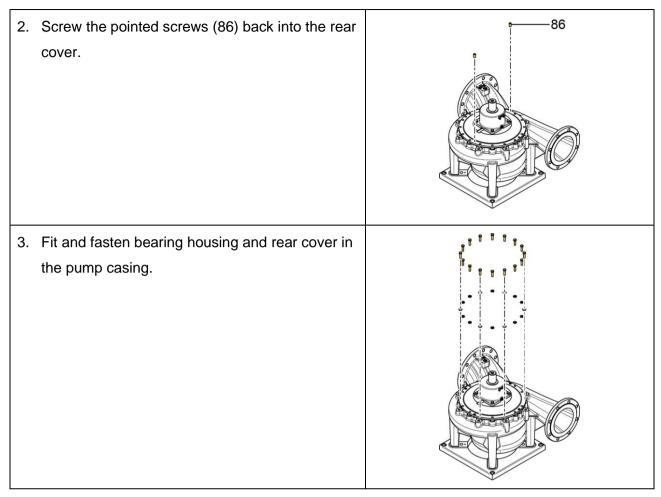

## 10.3.5. Fitting impeller

#### Ø215/265

Fit the sunk key in the shaft and lead the impeller towards the shoulder of the shaft. Secure the impeller with washers (7 and 8) and a nut.




 Fit the sunk key in the shaft and lead the impeller towards the shoulder of the shaft.
 Secure the impeller with washers (7 and 8) and a set screw.





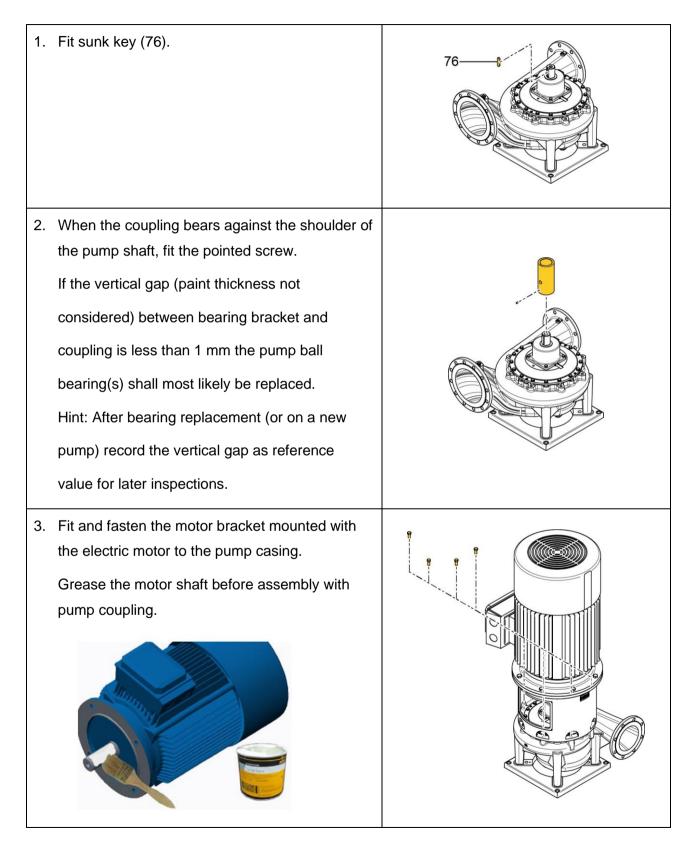

**NOTE:** Take care that the ring at the end of the shaft seal spring locates in the recess of the impeller.

#### 10.3.6. Fitting bearing housing and rear cover

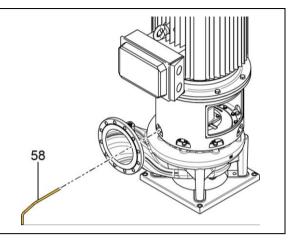







**NOTE:** When placing the O-ring, check the material of the O-ring first. As standard the material is nitrile, but it might be EPDM which will be damaged by mineral grease. Use soft soap or silicone grease for EPDM.

#### 10.3.7. Shaft


When the pump has been assembled, check that the shaft rotates freely.

## DESMI \_\_\_\_\_\_ 10.3.8. Fitting coupling

#### In 02 combination:



4. Fit pipe (58).



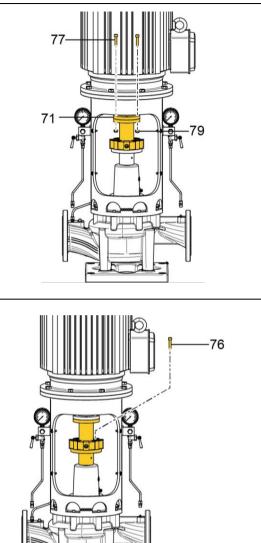


**NOTE:** If the coupling is fitted on the assembled pump, take care that you do not damage the bearing by pressing the coupling too hard. The coupling might be heated to facilitate the fitting. If the coupling is fitted before assembling the pump, the shaft must be supported at the opposite shaft end while the coupling is pressed into place.

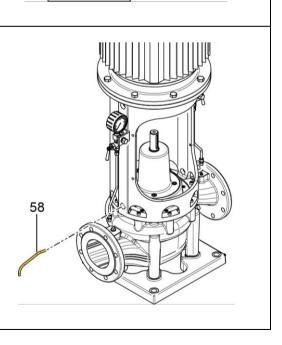
#### In 13 and 14 combinations:

#### Ø215/265

| 1. | Fit the flexible coupling (74) to the spacer (72)<br>by means of the Allen screws (76) which are<br>tightened up with torque according to the table<br>below.                                                                                                                                                                                                                                        | 72<br>72<br>74<br>76 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2. | Secure the coupling part pump (70) to the shaft<br>by means of the pointed screw (73).<br>If the vertical gap (paint thickness not<br>considered) between bearing bracket and<br>coupling is less than 1 mm the pump ball<br>bearing(s) shall most likely be replaced.<br>Hint: After bearing replacement (or on a new<br>pump) record the vertical gap as reference<br>value for later inspections. |                      |
| 1  |                                                                                                                                                                                                                                                                                                                                                                                                      |                      |


3. Fix the spacer with the flexible coupling to the coupling part motor (71) by means of the Allen screws (77) and lock nuts (79), also with torque according to the table below. In order to secure the bolt connection fit a new lock nut or secure with a locking means.

4. Fit the flexible coupling to the coupling part


tightened with the torque stated.

pump by means of the Allen screws (76) which

are to be greased a little under the bolt head and



5. Fit pipe (58).





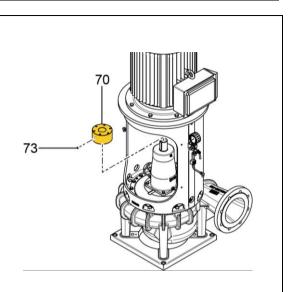


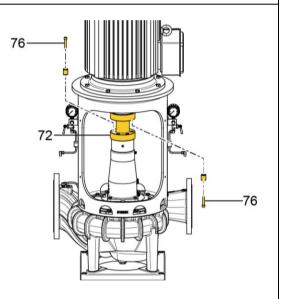
**NOTE:** Check that the aluminum insert in the rubber part does not rotate during tightening as it may damage the coupling. To prevent this, apply a little grease to the bolts under the bolt head. The Allen screws (76) can be used again and up to 3 times before they are to be replaced by new original bolts to secure the locking function. Do not use Loctite as it will damage the rubber element.



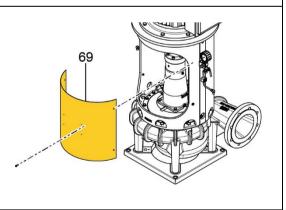
**NOTE:** Check that the distance, cf. the table below, between spacer and coupling part pump corresponds to the actual coupling size which appears from the coupling element itself.

| Thread | Torque | Coupling element | Distance |
|--------|--------|------------------|----------|
| M8     | 25 Nm  | V1700-0832       | 4 mm     |
| M10    | 50 Nm  | V1700-1042       | 4 mm     |
| M12    | 90 Nm  | V1700-1242       | 6 mm     |
| M14    | 140 Nm | V1700-1442       | 6 mm     |


#### Ø330/415/418/465/525


| 1. | Check Allen screws (76) and coupling bushes<br>(74) for damage and clean these with a cloth.<br>Replace them in case of damage.                                                                                                                                                                                                                          |                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2. | Remove grease from the screw threads by<br>means of benzene, and clean the threaded<br>holes in the coupling halves for pump and motor<br>by means of pressure air. If new coupling halves<br>are mounted, also remove grease from the<br>threaded holes by means of benzene.                                                                            |                            |
| 3. | Place coupling bushes (74) in the top holes of<br>the spacer (72), the chamfering on the bushes is<br>to face downwards. Place the coupling bush in<br>the bottom holes of the spacer, the chamfering<br>on the bushes is to face upwards. Hold the hand<br>under the spacer and the bottom coupling<br>bushes and carefully push the spacer into place. | 74<br>72<br>72<br>74<br>74 |

#### ASSEMBLING PUMP SET


# DESMI

- 4. Secure the coupling part pump (70) to the shaft by means of the pointed screw (73).
  If the vertical gap (paint thickness not considered) between bearing bracket and coupling is less than 1 mm the pump ball bearing(s) shall most likely be replaced.
  Hint: After bearing replacement (or on a new pump) record the vertical gap as reference value for later inspections.
- 5. Apply Loctite type 242 on the allen screws (Loctite 242 is recommended as it will allow dismantling) and tighten all screws with the torque wrench. It might be necessary to push the spacer a little until the screws have located in the thread and you feel that the spacer has found the right position.





6. Fit guard (69).





**NOTE:** Tighten the screws(76) with a torque wrench at 55 Nm. As motor/pump shaft will rotate during this operation it is necessary to hold the spacer by wedging a pin bolt, a piece of flat bar or the like between the two following screw heads in order to lock the system while the screws are tightened.

#### **11. ORDERING SPARE PARTS**

When ordering spare parts please always state pump type, serial No. (appears on the name plate of the pump), position No. on the assembly drawing and designation on the spare parts list.

Spare parts or Spare Parts Kit (SPK) can be ordered via <a href="mailto:spareparts@desmi.com">spareparts@desmi.com</a>

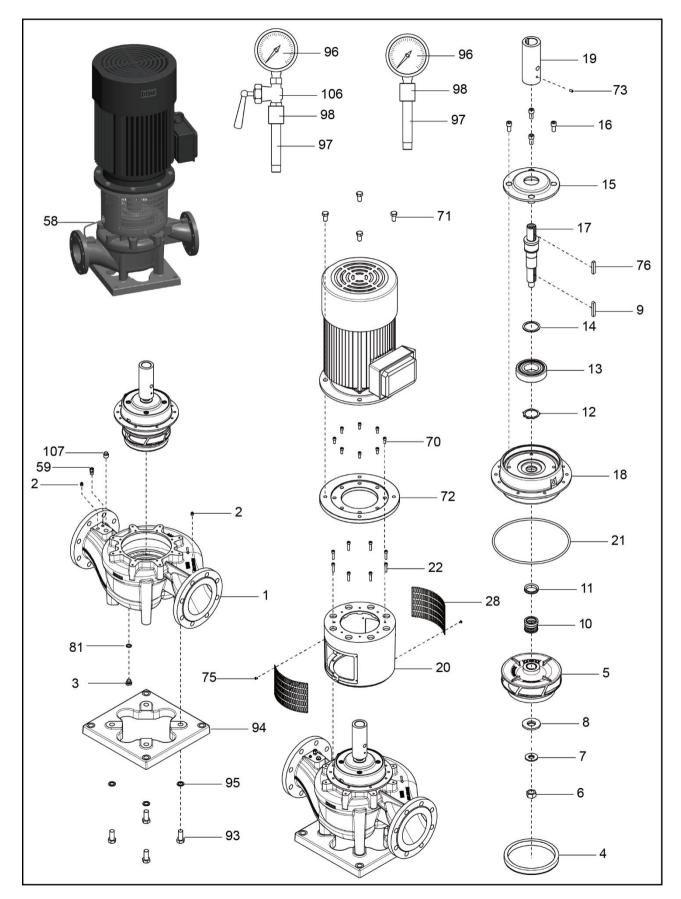
#### Recommended spare parts stock for 2 years' operation to DIN 24296.

Quantity of spare parts for recommended spare parts stock.

#### NSL /-02 combination

|                                          |                         | Number of pumps (including stand-by pumps) |   |   |   |         |         |                |
|------------------------------------------|-------------------------|--------------------------------------------|---|---|---|---------|---------|----------------|
| Part No.                                 | Description             | 2                                          | 3 | 4 | 5 | 6 and 7 | 8 and 9 | 10 and<br>more |
| 17                                       | Shaft                   | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |
| 5                                        | Impeller                | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |
| 21                                       | O-ring                  | 4                                          | 6 | 8 | 8 | 9       | 10      | 100%           |
| 10                                       | Mechanical seal         | 1                                          | 1 | 2 | 2 | 2       | 3       | 25%            |
| 4                                        | Casing wear<br>ring     | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 27 (only for<br>330/415/418/<br>465/525) | Rear cover<br>wear ring | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 13                                       | Bearing                 | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 12                                       | Snap ring               | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 11                                       | Water deflector         | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
|                                          | SPK                     | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |



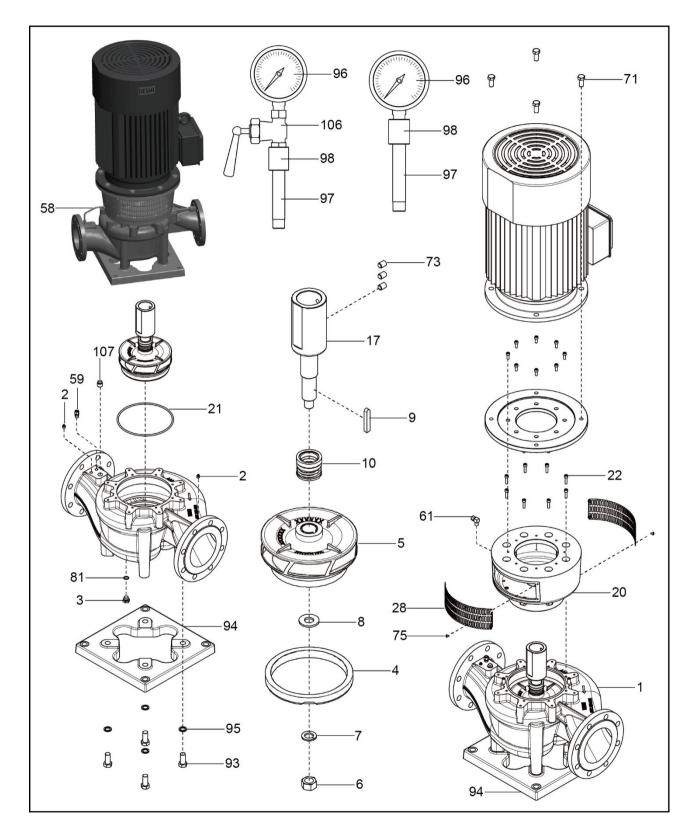

|                                         |                         | Number of pumps (including stand-by pumps) |   |   |   |         |         |                |  |
|-----------------------------------------|-------------------------|--------------------------------------------|---|---|---|---------|---------|----------------|--|
| Part No.                                | Description             | 2                                          | 3 | 4 | 5 | 6 and 7 | 8 and 9 | 10 and<br>more |  |
| 17                                      | Shaft                   | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |  |
| 5                                       | Impeller                | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |  |
| 21                                      | O-ring                  | 4                                          | 6 | 8 | 8 | 9       | 10      | 100%           |  |
| 10                                      | Mechanical seal         | 1                                          | 1 | 2 | 2 | 2       | 3       | 25%            |  |
| 4                                       | Casing wear ring        | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |  |
| 27(only for<br>330/415/418<br>/465/525) | Rear cover wear<br>ring | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |  |
|                                         | SPK                     | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |  |

#### NSL /-13/14 combinations

|                                         |                      | Number of pumps (including stand-by pumps) |   |   |   |         |         |                |
|-----------------------------------------|----------------------|--------------------------------------------|---|---|---|---------|---------|----------------|
| Part No.                                | Description          | 2                                          | 3 | 4 | 5 | 6 and 7 | 8 and 9 | 10 and<br>more |
| 17                                      | Shaft                | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |
| 5                                       | Impeller             | 1                                          | 1 | 1 | 2 | 2       | 2       | 20%            |
| 21                                      | O-ring               | 4                                          | 6 | 8 | 8 | 9       | 10      | 100%           |
| 10                                      | Mechanical seal      | 1                                          | 1 | 2 | 2 | 2       | 3       | 25%            |
| 4                                       | Casing wear ring     | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 27(only for<br>330/415/418<br>/465/525) | Rear cover wear ring | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 13                                      | Bearing              | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 15                                      | Bearing              | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 12                                      | Snap ring            | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
| 11                                      | Water deflector      | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |
|                                         | SPK                  | 2                                          | 2 | 2 | 3 | 3       | 4       | 50%            |



## 11.1. Assembly drawing NSL-215/265 -02 combination




### 11.2. Spare parts list NSL-215/265 -02 combination

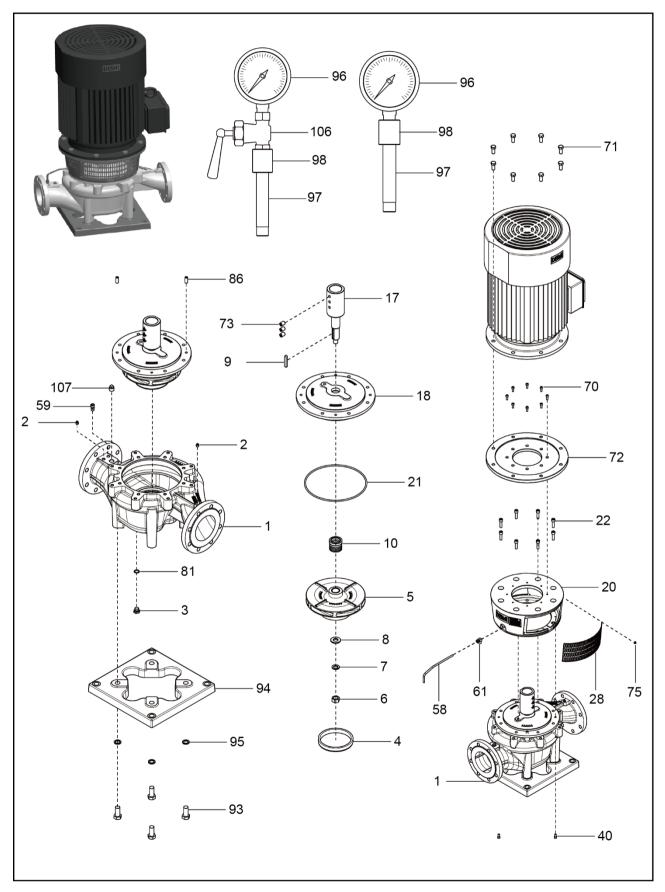
| Pos. No | Description     | Pos. No | Description         |
|---------|-----------------|---------|---------------------|
| 1       | Pump casing     | 21      | O-ring              |
| 2       | Pipe plug       | 22      | Allen screw         |
| 3       | Pipe plug       | 28      | Guard               |
| 4       | Sealing ring    | 58      | Pipe                |
| 5       | Impeller        | 59      | Hexagon nipple      |
| 6       | Nut             | 70      | Allen screw         |
| 7       | Spring washer   | 71      | Set screw           |
| 8       | Washer          | 72      | Intermediate flange |
| 9       | Sunk key        | 73      | Pointed screw       |
| 10      | Shaft seal      | 75      | INSEX-screw         |
| 11      | Water deflector | 76      | Sunk key            |
| 12      | Ring lock       | 81      | Sealing washer      |
| 13      | Ball bearing    | 93      | Set screw           |
| 14      | Support disc    | 94      | Base plate          |
| 15      | Bearing cover   | 95      | Lock washer         |
| 16      | Allen screw     | 96      | Manometer           |
| 17      | Shaft           | 97      | Nipple              |
| 18      | Rear cover      | 98      | Sleeve              |
| 19      | Coupling        | 106     | Gauge valve         |
| 20      | Motor bracket   | 107     | Pipe plug           |



### 11.3. Assembly drawing NSL-215/265 -12 combination



### 11.4. Spare parts list NSL-215/265 -12 combination


#### See stainless steel pump on the next pages

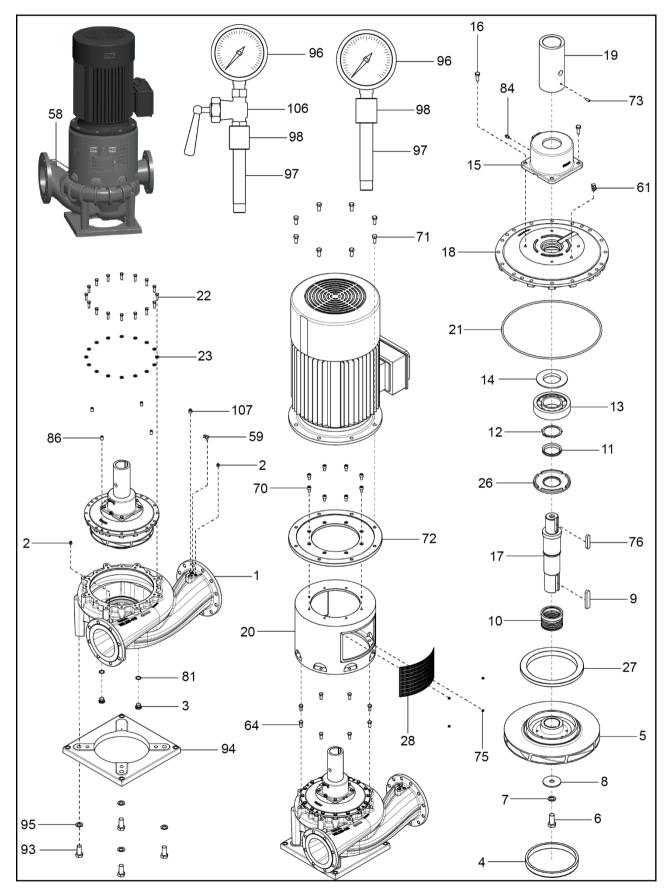
| Pos. No | Description           | Pos. No | Description    |
|---------|-----------------------|---------|----------------|
| 1       | Pump casing           | 28      | Guard          |
| 2       | Pipe plug             | 58      | Pipe           |
| 3       | Pipe plug             | 59      | Hexagon nipple |
| 4       | Sealing ring          | 71      | Set screw      |
| 5       | Impeller              | 73      | Pointed screw  |
| 6       | Nut                   | 75      | INSEX-screw    |
| 7       | Spring washer         | 81      | Sealing washer |
| 8       | Washer                | 93      | Set screw      |
| 9       | Sunk key              | 94      | Base plate     |
| 10      | Mechanical shaft seal | 95      | Lock washer    |
| 17      | Shaft                 | 96      | Manometer      |
| 20      | Motor bracket         | 97      | Nipple         |
| 21      | O-ring                | 98      | Sleeve         |
| 22      | Allen screw           | 107     | Pipe plug      |

The pump has various options and combinations for the wet part material to fulfil desired applications.



### 11.5. Assembly drawing NSL-215/265 -S12 combination




### 11.6. Spare parts list NSL-215/265 -S12 combination

| Pos. No | Description      | Pos. No | Description      |
|---------|------------------|---------|------------------|
| 1       | Pump casing      | 40      | Allen screw      |
| 2       | Pipe plug        | 58      | Pipe             |
| 3       | Pipe plug        | 59      | Hexagon nipple   |
| 4       | Sealing ring     | 70      | Allen screw *    |
| 5       | Impeller         | 71      | Set screw        |
| 6       | Nut              | 72      | Interm. flange * |
| 7       | Spring washer    | 73      | Pointed screw    |
| 8       | Washer           | 75      | INSEX-screw      |
| 9       | Sunk key         | 81      | Sealing washer   |
| 10      | Mech. Shaft seal | 93      | Set screw        |
| 17      | Shaft            | 94      | Base plate       |
| 18      | Rear cover       | 95      | Lock washer      |
| 20      | Motor bracket    | 96      | Manometer        |
| 21      | O-ring           | 97      | Nipple           |
| 22      | Allen screw      | 98      | Sleeve           |
| 28      | Guard            | 107     | Pipe plug        |

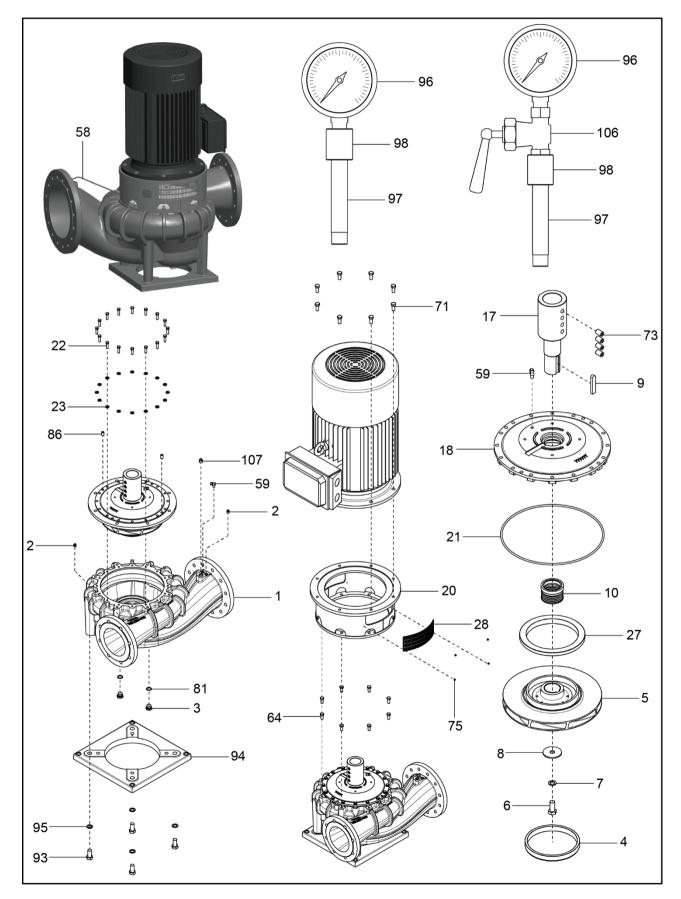
\*) Only if motor flange is bigger than bracket.



#### 11.7. Assembly drawing NSL-330/415/465 -02 combination



### 11.8. Spare parts list NSL-330/415/465 -02 combination

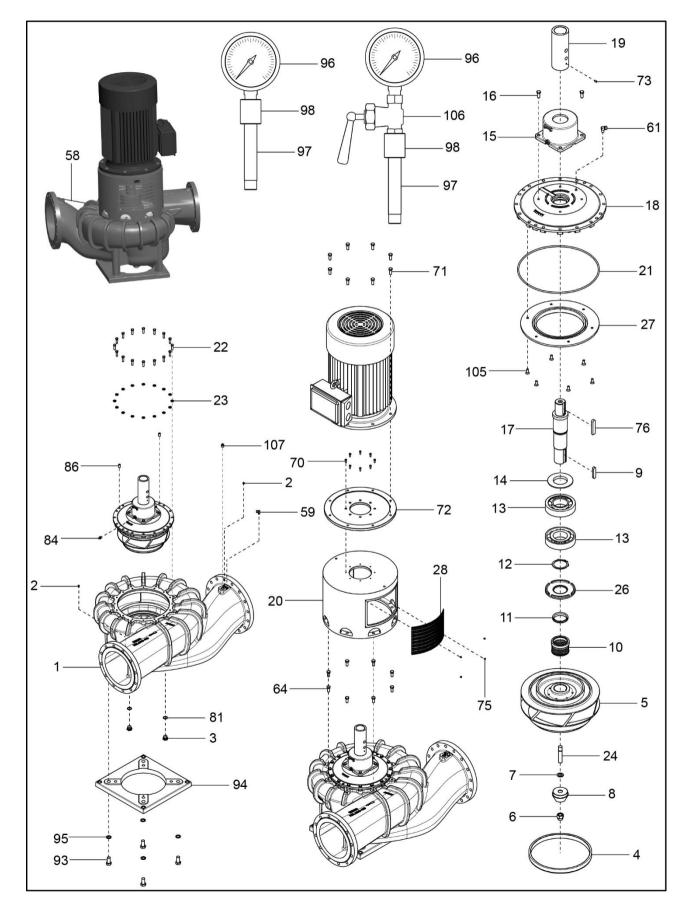

| Pos. No | Description            | Pos. No | Description         |
|---------|------------------------|---------|---------------------|
| 1       | Pump casing            | 27      | Sealing ring 2      |
| 2       | Pipe plug              | 28      | Guard               |
| 3       | Pipe plug              | 58      | Pipe                |
| 4       | Sealing ring           | 59      | Hexagon nipple      |
| 5       | Impeller               | 61      | Hexagon nipple      |
| 6       | Set screw              | 64      | Set screw           |
| 7       | Spring washer          | 70      | Allen screw         |
| 8       | Washer                 | 71      | Set screw           |
| 9       | Sunk key               | 72      | Intermediate flange |
| 10      | Mech. Shaft seal       | 73      | Pointed screw       |
| 11      | Water deflector        | 75      | INSEX-screw         |
| 12      | Ring lock              | 76      | Sunk key            |
| 13      | Ball bearing           | 81      | Sealing washer      |
| 14      | Grease valve ring *    | 84      | Lubricator nipple   |
| 15      | Bearing cover          | 86      | Pointed screw       |
| 16      | Set screw              | 93      | Set screw           |
| 17      | Shaft                  | 94      | Base plate          |
| 18      | Rear cover             | 95      | Lock washer         |
| 19      | Coupling               | 96      | Manometer           |
| 20      | Motor bracket          | 97      | Nipple              |
| 21      | O-ring                 | 98      | Sleeve              |
| 22      | Set screw              | 106     | Gauge valve         |
| 23      | Lock washer            | 107     | Pipe plug           |
| 26      | Cover under bearing *1 |         |                     |

\*) Support disc in light bearing housing

\*1) Option – See Appendix B



### 11.9. Assembly drawing NSL-330/415/465 -12 combination






### 11.10. Spare parts list NSL-330/415/465 -12 combination

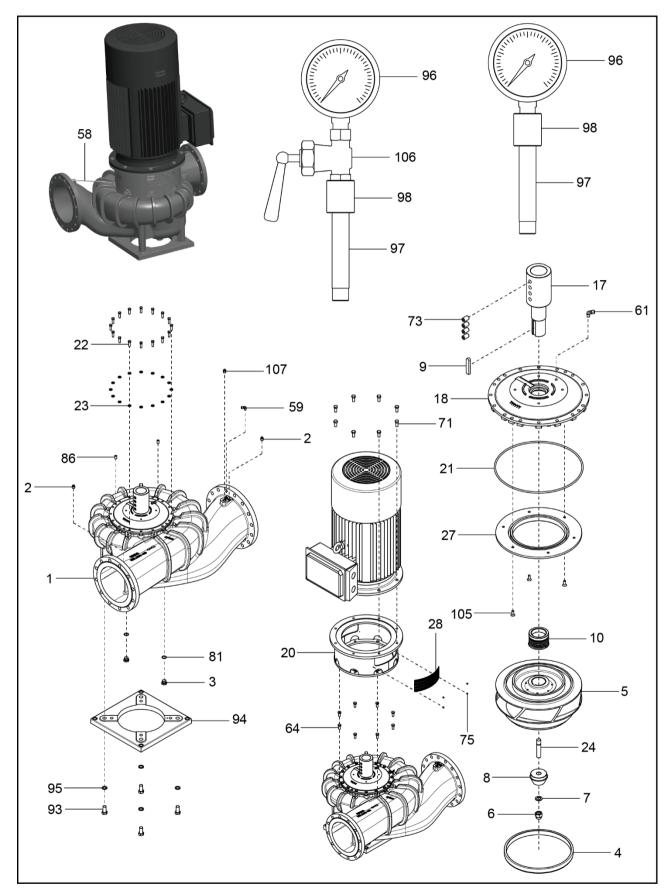
| Pos. No | Description      | Pos. No | Description    |
|---------|------------------|---------|----------------|
| 1       | Pump casing      | 28      | Guard          |
| 2       | Pipe plug        | 58      | Pipe           |
| 3       | Pipe plug        | 59      | Hexagon nipple |
| 4       | Sealing ring     | 64      | Set screw      |
| 5       | Impeller         | 71      | Set screw      |
| 6       | Set screw        | 73      | Pointed screw  |
| 7       | Spring washer    | 75      | INSEX-screw    |
| 8       | Washer           | 81      | Sealing washer |
| 9       | Sunk key         | 86      | Pointed screw  |
| 10      | Mech. shaft seal | 93      | Set screw      |
| 17      | Shaft            | 94      | Base plate     |
| 18      | Rear cover       | 95      | Lock washer    |
| 20      | Motor bracket    | 96      | Manometer      |
| 21      | O-ring           | 97      | Nipple         |
| 22      | Set screw        | 98      | Sleeve         |
| 23      | Lock washer      | 106     | Gauge valve    |
| 27      | Sealing ring 2   | 107     | Pipe plug      |





#### 11.11. Assembly drawing NSL300-418 -02 combination




### 11.12. Spare parts list NSL300-418 -02 combination

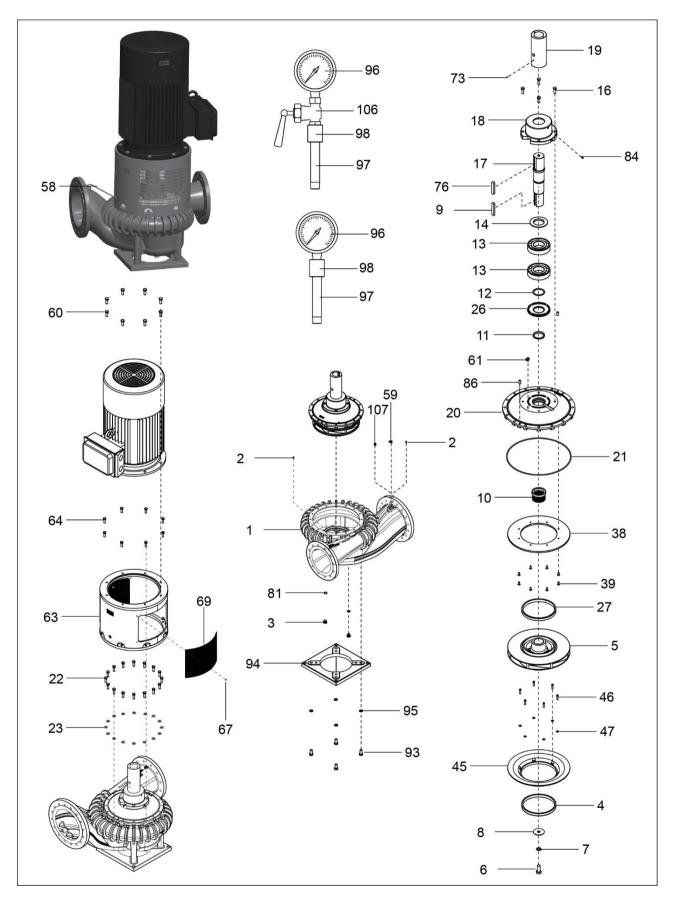
| Pos. No | Description          | Pos. No | Description         |
|---------|----------------------|---------|---------------------|
| 1       | Pump casing          | 27      | Sealing ring 2      |
| 2       | Pipe plug            | 28      | Guard               |
| 3       | Pipe plug            | 58      | Pipe                |
| 4       | Sealing ring         | 59      | Hexagon nipple      |
| 5       | Impeller             | 61      | Hexagon nipple      |
| 6       | Nut                  | 64      | Set screw           |
| 7       | Spring washer        | 70      | Allen screw         |
| 8       | Inlet cone           | 71      | Set screw           |
| 9       | Sunk key             | 72      | Intermediate flange |
| 10      | Mech. shaft seal     | 73      | Pointed screw       |
| 11      | Water deflector      | 75      | INSEX-screw         |
| 12      | Ring lock            | 76      | Sunk key            |
| 13      | Ball bearing         | 81      | Sealing washer      |
| 14      | Grease valve ring    | 84      | Lubricator nipple   |
| 15      | Bearing cover        | 86      | Pointed screw       |
| 16      | Set screw            | 93      | Set screw           |
| 17      | Shaft                | 94      | Base plate          |
| 18      | Rear cover           | 95      | Lock washer         |
| 19      | Coupling             | 96      | Manometer           |
| 20      | Motor bracket        | 97      | Nipple              |
| 21      | O-ring               | 98      | Sleeve              |
| 22      | Set screw            | 105     | Counter sunk screw  |
| 23      | Lock washer          | 106     | Gauge valve         |
| 24      | Stud                 | 107     | Pipe plug           |
| 26      | Cover under bearing* |         |                     |

\*) Option – See Appendix B



### 11.13. Assembly drawing NSL300-418 -12 combination






### 11.14. Spare parts list NSL300-418 -12 combination

| Pos. No | Description      | Pos. No | Description        |
|---------|------------------|---------|--------------------|
| 1       | Pump casing      | 58      | Pipe               |
| 2       | Pipe plug        | 59      | Hexagon nipple     |
| 3       | Pipe plug        | 61      | Hexagon nipple     |
| 4       | Sealing ring     | 64      | Set screw          |
| 5       | Impeller         | 71      | Set screw          |
| 6       | Nut              | 73      | Pointed screw      |
| 7       | Spring washer    | 75      | INSEX-screw        |
| 8       | Inlet cone       | 81      | Sealing washer     |
| 9       | Sunk key         | 86      | Pointed screw      |
| 10      | Mech. shaft seal | 93      | Set screw          |
| 17      | Shaft            | 94      | Base plate         |
| 18      | Rear cover       | 95      | Lock washer        |
| 20      | Motor bracket    | 96      | Manometer          |
| 21      | O-ring           | 97      | Nipple             |
| 22      | Set screw        | 98      | Sleeve             |
| 23      | Lock washer      | 105     | Counter sunk screw |
| 24      | Stud             | 106     | Gauge valve        |
| 27      | Sealing ring 2   | 107     | Pipe plug          |
| 28      | Guard            |         |                    |

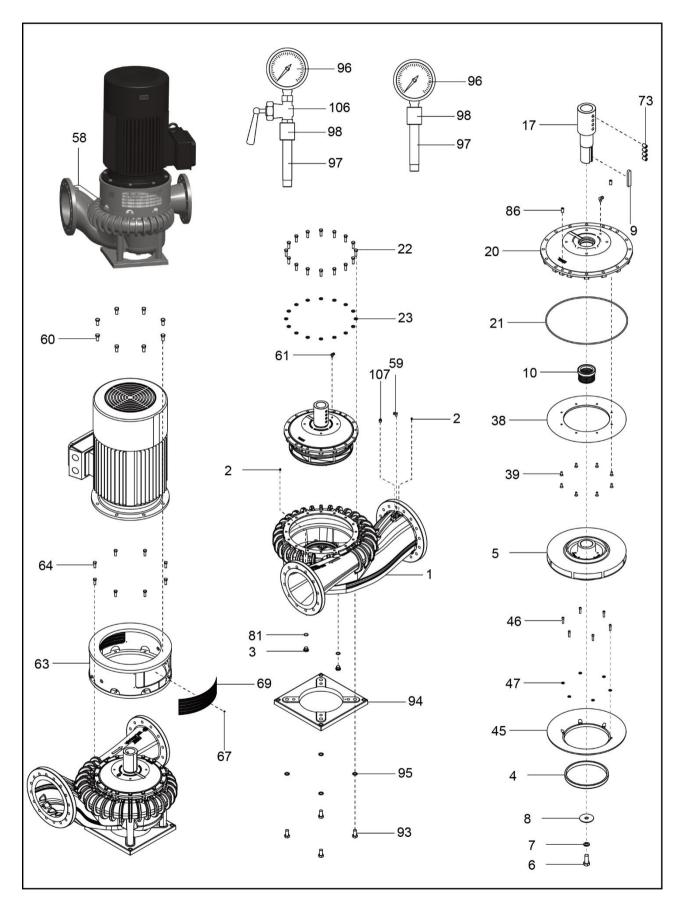


### 11.15. Assembly drawing NSL200/250/300-525 -02 combination





11.16.


. Spare parts list NSL200/250/300-525 -02 combination

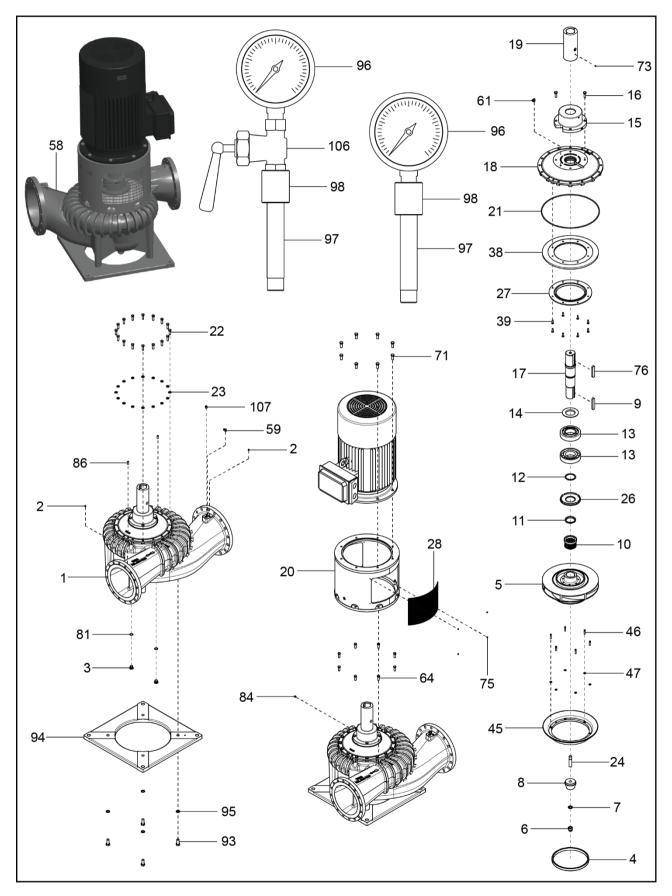
| Pos. No | Description           | Pos. No       | Description                       |  |
|---------|-----------------------|---------------|-----------------------------------|--|
| 1       | Pump casing           | 39            | Counter sunk screw                |  |
| 2       | Pipe plug             | 45            | Guide plate (only for NSL300-525) |  |
| 3       | Pipe plug             | 46            | Allan screw                       |  |
| 4       | Sealing ring          | 47            | Washer                            |  |
| 5       | Impeller              | 58            | Pipe                              |  |
| 6       | Set screw             | 59            | Hexagon nipple                    |  |
| 7       | Spring collar         | 60            | Set screw                         |  |
| 8       | Inlet cone            | 61            | Hexagon nipple                    |  |
| 9       | Sunk key              | 63            | Bracket                           |  |
| 10      | Mech. shaft seal      | 64            | Set screw                         |  |
| 11      | Water deflector       | 67            | Set screw                         |  |
| 12      | Ring lock             | 69            | Guard                             |  |
| 13      | Ball bearing          | 73            | Pointed screw                     |  |
| 14      | Grease valve ring     | 76            | Sunk key                          |  |
| 16      | Set screw             | 81            | Sealing washer                    |  |
| 17      | Shaft                 | 84            | Lubricator nipple                 |  |
| 18      | Bearing housing       | 86            | Pointed screw                     |  |
| 19      | Coupling              | 93            | Set screw                         |  |
| 20      | Rear cover            | 94            | Base plate                        |  |
| 21      | O-ring                | 95            | Lock washer                       |  |
| 22      | Set screw             | 96            | Manometer                         |  |
| 23      | Lock washer           | 97            | Reducing nipple                   |  |
| 26      | Cover under bearing * | 98            | Hexagon nipple                    |  |
| 27      | Sealing ring 2        | 106           | Gauge valve                       |  |
| 38      | Guide plate           | 107 Pipe plug |                                   |  |

\*) Option – See Appendix B



### 11.17. Assembly drawing NSL200/250/300-525 -12 combination





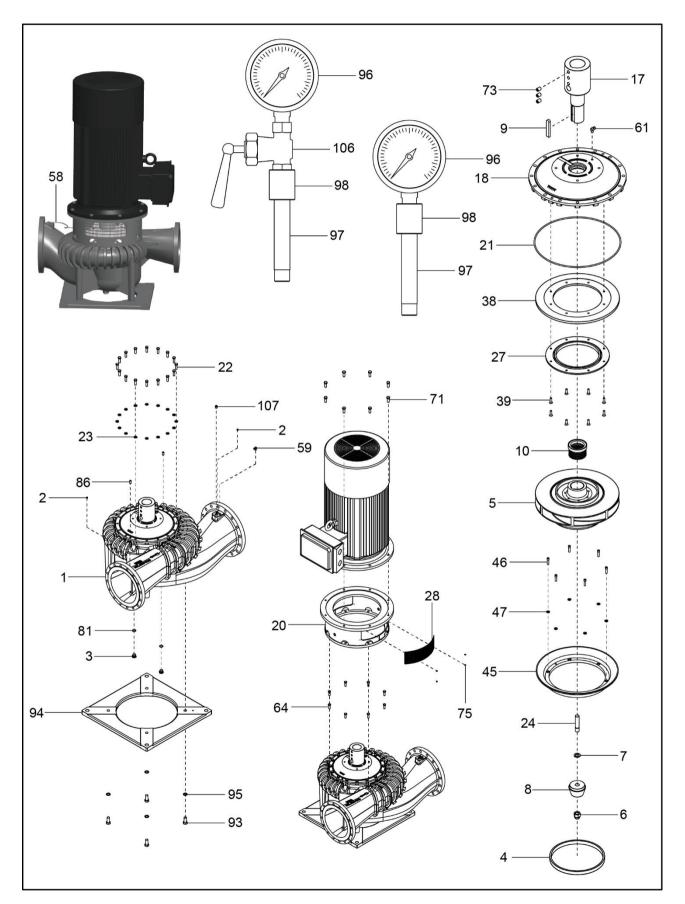

11.18. Spare parts list NSL200/250/300-525 -12 combination

| Pos. No | Description                       | Pos. No | Description     |  |
|---------|-----------------------------------|---------|-----------------|--|
| 1       | Pump casing                       | 58      | Pipe            |  |
| 2       | Pipe plug                         | 59      | Hexagon nipple  |  |
| 3       | Pipe plug                         | 60      | Set screw       |  |
| 4       | Sealing ring                      | 61      | Hexagon nipple  |  |
| 5       | Impeller                          | 63      | Bracket         |  |
| 6       | Set screw                         | 64      | Set screw       |  |
| 7       | Spring collar                     | 67      | Set screw       |  |
| 8       | Inlet cone                        | 69      | Guard           |  |
| 9       | Sunk key                          | 73      | Pointed screw   |  |
| 10      | Mech. shaft seal                  | 81      | Sealing washer  |  |
| 17      | Shaft                             | 86      | Pointed screw   |  |
| 20      | Rear cover                        | 93      | Set screw       |  |
| 21      | O-ring                            | 94      | Base plate      |  |
| 22      | Set screw                         | 95      | Lock washer     |  |
| 23      | Lock washer                       | 96      | Manometer       |  |
| 38      | Guide plate                       | 97      | Reducing nipple |  |
| 39      | Counter sunk screw                | 98      | Hexagon nipple  |  |
| 45      | Guide plate (only for NSL300-525) | 106     | Gauge valve     |  |
| 46      | Allan screw                       | 107     | Pipe plug       |  |
| 47      | Washer                            |         |                 |  |



## 11.19. Assembly drawing NSL350-525 -02 combination



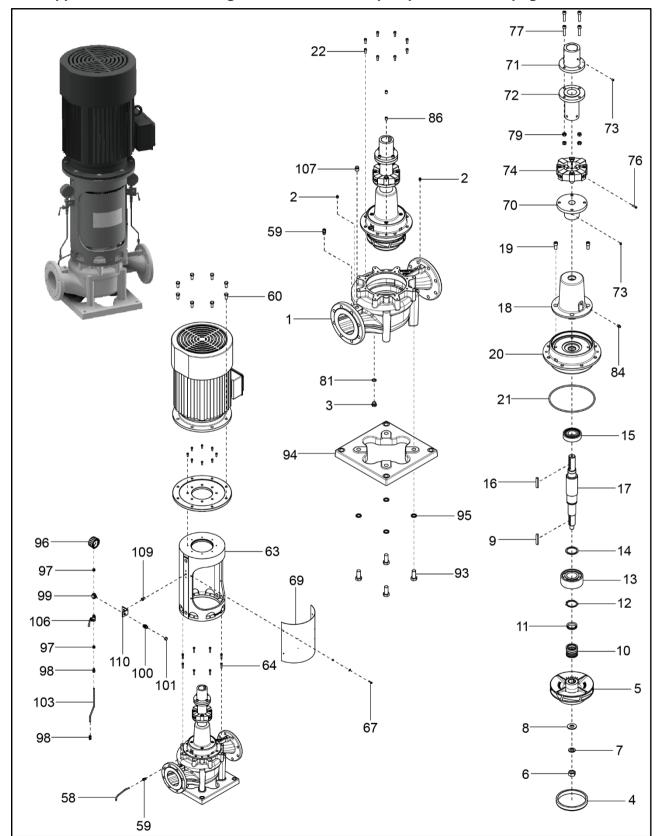



### 11.20. Spare parts list NSL350-525 -02 combination

| Pos. No | Description          | Pos. No | Description        |
|---------|----------------------|---------|--------------------|
| 1       | Pump casing          | 28      | Guard              |
| 2       | Pipe plug            | 38      | Guard plate        |
| 3       | Pipe plug            | 39      | Counter sunk screw |
| 4       | Sealing ring         | 45      | Guard Plate        |
| 5       | Impeller             | 46      | Screw              |
| 6       | Nut                  | 47      | Washer             |
| 7       | Spring washer        | 58      | Pipe               |
| 8       | Inlet cone           | 59      | Hexagon nipple     |
| 9       | Sunk key             | 61      | Hexagon nipple     |
| 10      | Mech. shaft seal     | 64      | Set screw          |
| 11      | Water deflector      | 71      | Set screw          |
| 12      | Ring lock            | 73      | Pointed screw      |
| 13      | Ball bearing         | 75      | INSEX-screw        |
| 14      | Grease valve ring    | 76      | Sunk key           |
| 15      | Bearing cover        | 81      | Sealing washer     |
| 16      | Set screw            | 84      | Lubricator nipple  |
| 17      | Shaft                | 86      | Pointed screw      |
| 18      | Rear cover           | 93      | Set screw          |
| 19      | Coupling             | 94      | Base plate         |
| 20      | Motor bracket        | 95      | Lock washer        |
| 21      | O-ring               | 96      | Manometer          |
| 22      | Set screw            | 97      | Nipple             |
| 23      | Lock washer          | 98      | Sleeve             |
| 24      | Stud                 | 106     | Gauge valve        |
| 26      | Cover under bearing* | 107     | Pipe plug          |
| 27      | Sealing ring 2       |         |                    |

\*) Option – See Appendix B

## 11.21. Assembly drawing NSL350-525 -12 combination






### 11.22. Spare parts list NSL350-525 -12 combination

| Pos. No | Description        | Pos. No | Description    |
|---------|--------------------|---------|----------------|
| 1       | Pump casing        | 45      | Guard Plate    |
| 2       | Pip eplug          | 46      | Screw          |
| 3       | Pipe plug          | 47      | Washer         |
| 4       | Sealing ring       | 58      | Pipe           |
| 5       | Impeller           | 59      | Hexagon nipple |
| 6       | Nut                | 61      | Hexagon nipple |
| 7       | Spring washer      | 64      | Set screw      |
| 8       | Inlet cone         | 71      | Set screw      |
| 9       | Sunk key           | 73      | Pointed screw  |
| 10      | Mech. shaft seal   | 75      | INSEX-screw    |
| 17      | Shaft              | 81      | Sealing washer |
| 18      | Rear cover         | 86      | Pointed screw  |
| 20      | Motor bracket      | 93      | Set screw      |
| 21      | O-ring             | 94      | Base plate     |
| 22      | Set screw          | 95      | Lock washer    |
| 23      | Lock washer        | 96      | Manometer      |
| 24      | Stud               | 97      | Nipple         |
| 27      | Sealing ring 2     | 98      | Sleeve         |
| 28      | Guard              | 106     | Gauge valve    |
| 38      | Guard plate        | 107     | Pipe plug      |
| 39      | Counter sunk screw |         |                |

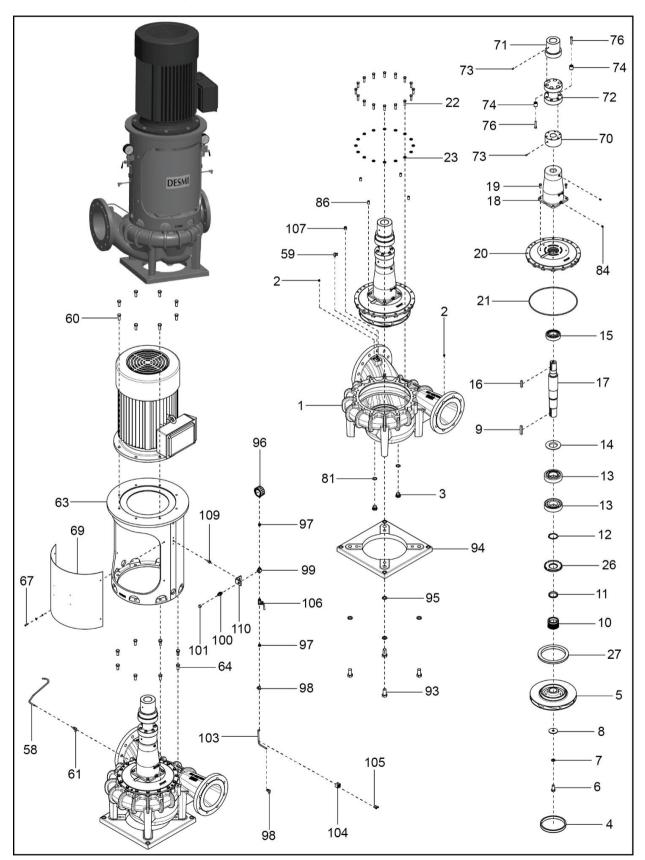
#### 11.23. Assembly drawing NSL-215/265 -14 combination



Also applies to /-13 or /-15 design. See ø330/415/525 pumps on the next page



#### 11.24. Spare parts list NSL-215/265 -14 combination


Also applies to /-13 or /-15 design.

| Pos. No | Description      | Pos. No | Description         |
|---------|------------------|---------|---------------------|
| 1       | Pump casing      | 67      | Set screw           |
| 2       | Pipe plug        | 69      | Guard               |
| 3       | Pipe plug        | 70      | Coupling part pump  |
| 4       | Sealing ring     | 71      | Coupling part motor |
| 5       | Impeller         | 72      | Spacer              |
| 6       | Nut              | 73      | Pointed screw       |
| 7       | Spring washer    | 74      | Elastomer           |
| 8       | Washer           | 76      | Allen screw         |
| 9       | Sunk key         | 77      | Allen screw         |
| 10      | Mech. shaft seal | 79      | Nut                 |
| 11      | Water deflector  | 81      | Sealing washer      |
| 12      | Ring lock        | 84      | Lubricator nipple * |
| 13      | Ball bearing     | 86      | Pointed screw       |
| 14      | Support disc     | 93      | Set screw           |
| 15      | Ball bearing     | 94      | Base plate          |
| 16      | Sunk key         | 95      | Lock washer         |
| 17      | Shaft            | 96      | Manometer           |
| 18      | Bearing housing  | 97      | Reducing nipple     |
| 19      | Allen screw      | 98      | Hexagon nipple      |
| 20      | Rear cover       | 99      | T-piece             |
| 21      | O-ring           | 100     | Bulkhead connection |
| 22      | Allen screw      | 101     | Screw cap           |
| 58      | Pipe             | 103     | Ріре                |
| 59      | Hexagon nipple   | 106     | Gauge valve         |
| 60      | Set screw        | 107     | Pipe plug           |
| 63      | Bracket          | 109     | Set screw           |
| 64      | Set screw        | 110     | Manometer fitting   |

\*) Only combination 14



#### 11.25. Assembly drawing NSL-330/415/465 -14 combination

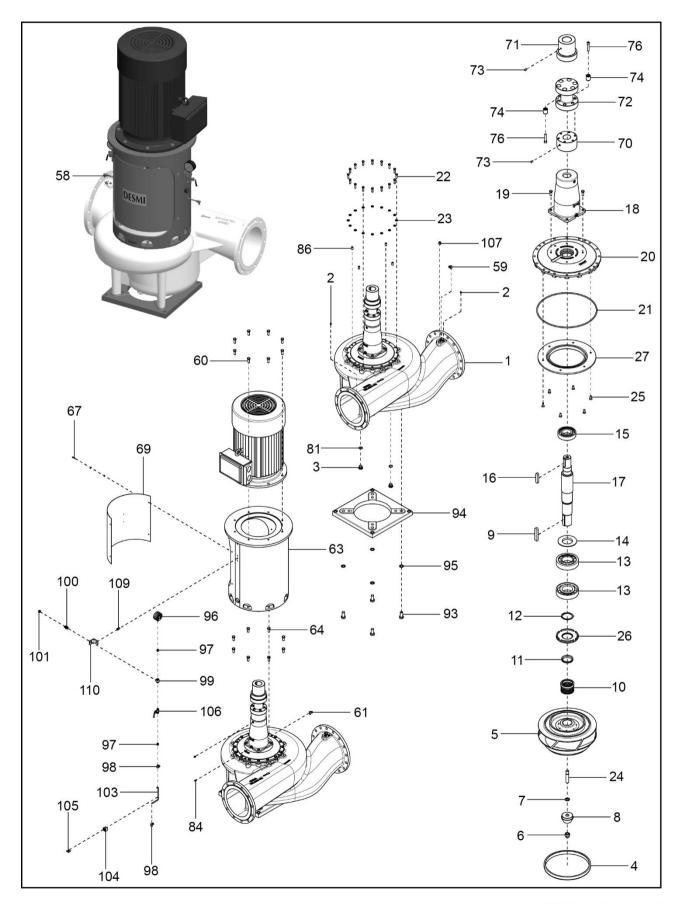


Also applies to /-13 design.



#### 11.26. Spare parts list NSL-330/415/465 -14 combination

Also applies to /-13 design.


| Pos. No | Description            | Pos. No | Description         |  |
|---------|------------------------|---------|---------------------|--|
| 1       | Pump casing            | 63      | Bracket             |  |
| 2       | Pipe plug              | 64      | Set screw           |  |
| 3       | Pipe plug              | 67      | Set screw           |  |
| 4       | Sealing ring           | 69      | Guard               |  |
| 5       | Impeller               | 70      | Coupling part pump  |  |
| 6       | Set screw              | 71      | Coupling part motor |  |
| 7       | Spring collar          | 72      | Spacer              |  |
| 8       | Washer                 | 73      | Pointed screw       |  |
| 9       | Sunk key               | 74      | Coupling bush       |  |
| 10      | Mech. shaft seal       | 76      | Allen screw         |  |
| 11      | Water deflector        | 81      | Sealing washer      |  |
| 12      | Ring lock              | 84      | Lubricator nipple   |  |
| 13      | Ball bearing           | 86      | Pointed screw       |  |
| 14      | Grease valve ring *    | 93      | Set screw           |  |
| 15      | Ball bearing           | 94      | Base plate          |  |
| 16      | Sunk key               | 95      | Lock washer         |  |
| 17      | Shaft                  | 96      | Manometer           |  |
| 18      | Bearing housing        | 97      | Reducing nipple     |  |
| 19      | Set screw              | 98      | Hexagon nipple      |  |
| 20      | Rear cover             | 99      | T-piece             |  |
| 21      | O-ring                 | 100     | Bulkhead connection |  |
| 22      | Set screw              | 101     | Screw cap           |  |
| 23      | Lock washer            | 103     | Pipe                |  |
| 26      | Cover under bearing *1 | 104     | Pipe clamp          |  |
| 27      | Sealing ring 2         | 105     | Allen screw         |  |
| 58      | Pipe                   | 106     | Gauge valve         |  |
| 59      | Hexagon nipple         | 107     | Pipe plug           |  |
| 60      | Set screw              | 109     | Set screw           |  |
| 61      | Hexagon nipple         | 110     | Manometer fitting   |  |

\*) Support disc in comb.13.

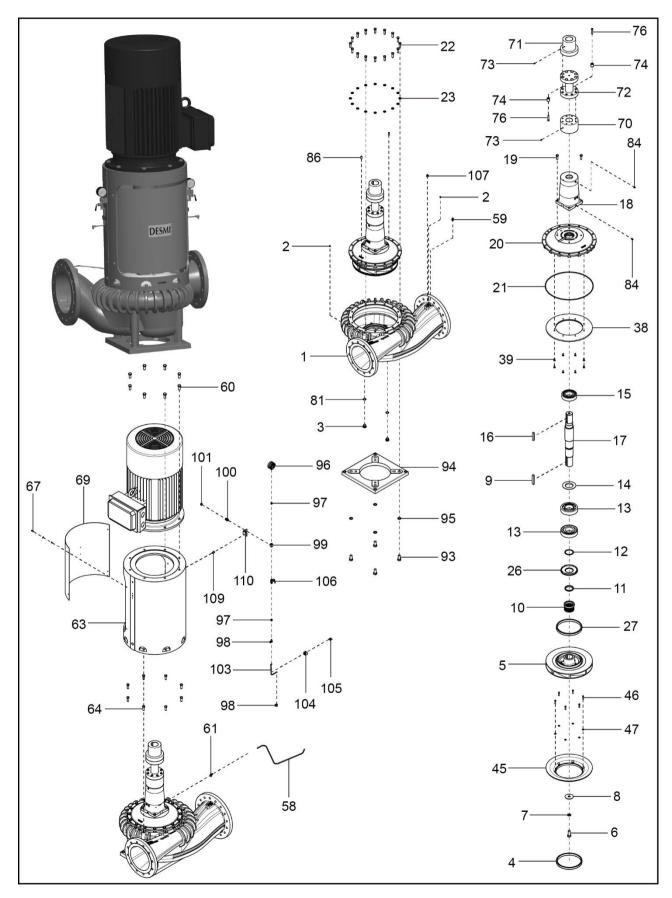
\*1) Option – See Appendix B



## 11.27. Assembly drawing NSL300-418 -14 combination






### 11.28. Spare parts list NSL300-418 -14 combination

| Pos. No Description Pos. No Description |                       | Description |                     |  |
|-----------------------------------------|-----------------------|-------------|---------------------|--|
| 1                                       | Pump casing           | 61          | Hexagon nipple      |  |
| 2                                       | Pipe plug             | 63          | Bracket             |  |
| 3                                       | Pipe plug             | 64          | Set screw           |  |
| 4                                       | Sealing ring          | 67          | Set screw           |  |
| 5                                       | Impeller              | 69          | Guard               |  |
| 6                                       | Cap nut               | 70          | Coupling part pump  |  |
| 7                                       | Spring collar         | 71          | Coupling part motor |  |
| 8                                       | Inlet cone            | 72          | Spacer              |  |
| 9                                       | Sunk key              | 73          | Pointed screw       |  |
| 10                                      | Mech. shaft seal      | 74          | Coupling bush       |  |
| 11                                      | Water deflector       | 76          | Allen screw         |  |
| 12                                      | Ring lock             | 81          | Sealing washer      |  |
| 13                                      | Ball bearing          | 84          | Lubricator nipple   |  |
| 14                                      | Grease valve ring     | 86          | Pointed screw       |  |
| 15                                      | Ball bearing          | 93          | Set screw           |  |
| 16                                      | Sunk key              | 94          | Base plate          |  |
| 17                                      | Shaft                 | 95          | Lock washer         |  |
| 18                                      | Bearing housing       | 96          | Manometer           |  |
| 19                                      | Set screw             | 97          | Reducing nipple     |  |
| 20                                      | Rear cover            | 98          | Hexagon nipple      |  |
| 21                                      | O-ring                | 99          | T-piece             |  |
| 22                                      | Set screw             | 100         | Bulkhead connection |  |
| 23                                      | Lock washer           | 101         | Screw cap           |  |
| 24                                      | Stud                  | 103         | Pipe                |  |
| 25                                      | Counter sunk screw    | 104         | Pipe clamp          |  |
| 26                                      | Cover under bearing * | 105         | Allen screw         |  |
| 27                                      | Sealing ring 2        | 106         | Gauge valve         |  |
| 58                                      | Pipe                  | 107         | Pipe plug           |  |
| 59                                      | Hexagon nipple        | 109         | Set screw           |  |
| 60                                      | Set screw             | 110         | Manometer fitting   |  |

\*) Option – See Appendix B

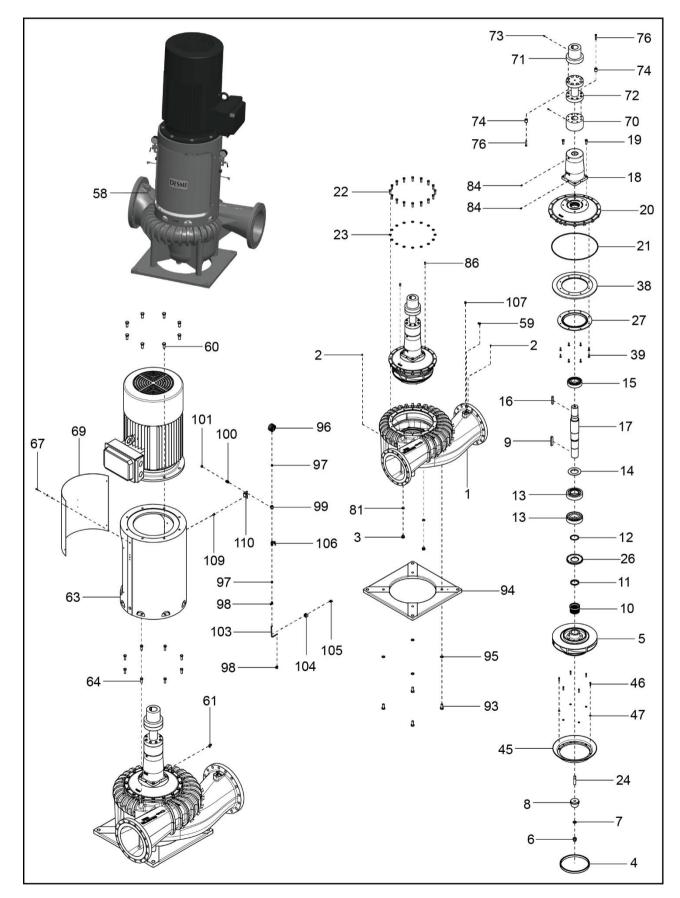


#### 11.29. Assembly drawing NSL200/250/300-525 -14 combination





11.30.


Spare parts list NSL200/250/300-525 -14 combination

| Pos. No | Description                       | Pos. No | Description         |  |
|---------|-----------------------------------|---------|---------------------|--|
| 1       | Pump casing                       | 60      | Set screw           |  |
| 2       | Pipe plug                         | 61      | Hexagon nipple      |  |
| 3       | Pipe plug                         | 63      | Bracket             |  |
| 4       | Sealing ring                      | 64      | Set screw           |  |
| 5       | Impeller                          | 67      | Set screw           |  |
| 6       | Set screw                         | 69      | Guard               |  |
| 7       | Spring collar                     | 70      | Coupling part pump  |  |
| 8       | Inlet cone                        | 71      | Coupling part motor |  |
| 9       | Sunk key                          | 72      | Spacer              |  |
| 10      | Mech. shaft seal                  | 73      | Pointed screw       |  |
| 11      | Water deflector                   | 74      | Coupling bush       |  |
| 12      | Ring lock                         | 76      | Allen screw         |  |
| 13      | Ball bearing                      | 81      | Sealing washer      |  |
| 14      | Grease valve ring                 | 84      | Lubricator nipple   |  |
| 15      | Ball bearing                      | 86      | Pointed screw       |  |
| 16      | Sunk key                          | 93      | Set screw           |  |
| 17      | Shaft                             | 94      | Base plate          |  |
| 18      | Bearing housing                   | 95      | Lock washer         |  |
| 19      | Set screw                         | 96      | Manometer           |  |
| 20      | Rear cover                        | 97      | Reducing nipple     |  |
| 21      | O-ring                            | 98      | Hexagon nipple      |  |
| 22      | Set screw                         | 99      | T-piece             |  |
| 23      | Lock washer                       | 100     | Bulkhead connection |  |
| 26      | Cover under bearing *             | 101     | Screw cap           |  |
| 27      | Sealing ring 2                    | 103     | Pipe                |  |
| 38      | Guide plate                       | 104     | Pipe clamp          |  |
| 39      | Counter sunk screw                | 105     | Allen screw         |  |
| 45      | Guide plate (only for NSL300-525) | 106     | Gauge valve         |  |
| 46      | Allan screw                       | 107     | Pipe plug           |  |
| 47      | Washer                            | 109     | Set screw           |  |
| 58      | Pipe                              | 110     | Manometer fitting   |  |
| 59      | Hexagon nipple                    |         |                     |  |

\*) Option – See Appendix B









#### 11.32. Spare parts list NSL350-525 -14 combination

| Pos. No | Description           | Pos. No | Description         |  |
|---------|-----------------------|---------|---------------------|--|
| 1       | Pump casing           | 59      | Hexagon nipple      |  |
| 2       | Pipe plug             | 60      | Set screw           |  |
| 3       | Pipe plug             | 61      | Hexagon nipple      |  |
| 4       | Sealing ring          | 63      | Bracket             |  |
| 5       | Impeller              | 64      | Set screw           |  |
| 6       | Cap nut               | 67      | Set screw           |  |
| 7       | Spring collar         | 69      | Guard               |  |
| 8       | Inlet cone            | 70      | Coupling part pump  |  |
| 9       | Sunk key              | 71      | Coupling part motor |  |
| 10      | Mech. shaft seal      | 72      | Spacer              |  |
| 11      | Water deflector       | 73      | Pointed screw       |  |
| 12      | Ring lock             | 74      | Coupling bush       |  |
| 13      | Ball bearing          | 76      | Allen screw         |  |
| 14      | Grease valve ring     | 81      | Sealing washer      |  |
| 15      | Ball bearing          | 84      | Lubricator nipple   |  |
| 16      | Sunk key              | 86      | Pointed screw       |  |
| 17      | Shaft                 | 93      | Set screw           |  |
| 18      | Bearing housing       | 94      | Base plate          |  |
| 19      | Set screw             | 95      | Lock washer         |  |
| 20      | Rear cover            | 96      | Manometer           |  |
| 21      | O-ring                | 97      | Reducing nipple     |  |
| 22      | Set screw             | 98      | Hexagon nipple      |  |
| 23      | Lock washer           | 99      | T-piece             |  |
| 24      | Stud                  | 100     | Bulkhead connection |  |
| 26      | Cover under bearing * | 101     | Screw cap           |  |
| 27      | Sealing ring 2        | 103     | Pipe                |  |
| 38      | Guide plate           | 104     | Pipe clamp          |  |
| 39      | Counter sunk screw    | 105     | Allen screw         |  |
| 45      | Guide plate           | 106     | Gauge valve         |  |
| 46      | Allan screw           | 107     | Pipe plug           |  |
| 47      | Washer                | 109     | Sets crew           |  |
| 58      | Pipe                  | 110     | Manometer fitting   |  |

\*) Option – See Appendix B

#### APPENDIX A

Check length from motor shaft end to motor flange being within +/-0.5 mm of the nominal length (like 60, 80, 110, 140 and 170 mm).

If the motor shaft is too short then fit a pointed screw glued into the motor shaft end to adjust the pump shaft to correct mounting position – inorder to ensure correct build in length for the ELK shaft seal.

If the motor shaft is too long then it has to be machined / milled to nominal length.

It has to be checked if the shaft sealing have the correct length when mounted on the pump shaft as shown below. I.e. there shall always be 44.5 +/- 0.5mm from sliding surface on the seat to the end of the rotating part, on the sizes of ELK sealing used by DESMI. Please observe that the rotating part protrudes 2 mm beyond the shoulder on the pump shaft as shown below.

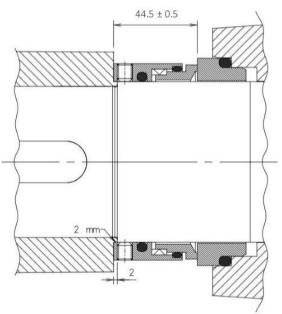



Figure 12-1: Nominal length

Also make sure that the electric motor is with locked bearing in the drive end – i.e. there must not be forced axial stroke of the electric motor.

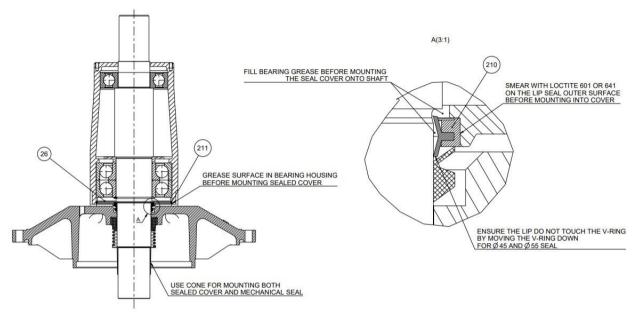


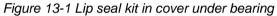
NOTE: Never use mineral oil / fat as grease, as rubber parts as standard are in EPDM.



**NOTE:** Never put grease on the sliding surfaces! They must be completely dry, dust-free and clean during the mounting procedure. Also any fingerprints shall be removed with alcohol or another suitable solvent.




**NOTE:** ELK shaft seals must be turned after installation. So O-rings, springs and sliding surfaces can slip into right placement before pressure testing. This is done by mounting the seal as described and later turn the shaft about 10 revolutions - with water in the pump - but without adding pressure. Then pressure test the pump as normally done.




#### **APPENDIX B**

Assembly drawing of Lip seal kit in cover under bearing.

• The lip seal kit is optional.





#### SPARE PARTS LIST

| Pos. No Description |                     |
|---------------------|---------------------|
| 26                  | Cover under bearing |
| 210                 | Lip Seal            |
| 211                 | O-ring              |